sluggish diffusion
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 18)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kohsuke Mori ◽  
Naoki Hashimoto ◽  
Naoto Kamiuchi ◽  
Hideto Yoshida ◽  
Hisayoshi Kobayashi ◽  
...  

AbstractHigh-entropy alloys (HEAs) have been intensively pursued as potentially advanced materials because of their exceptional properties. However, the facile fabrication of nanometer-sized HEAs over conventional catalyst supports remains challenging, and the design of rational synthetic protocols would permit the development of innovative catalysts with a wide range of potential compositions. Herein, we demonstrate that titanium dioxide (TiO2) is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA nanoparticles (NPs) at 400 °C. This process is driven by the pronounced hydrogen spillover effect on TiO2 in conjunction with coupled proton/electron transfer. The CoNiCuRuPd HEA NPs on TiO2 produced in this work were found to be both active and extremely durable during the CO2 hydrogenation reaction. Characterization by means of various in situ techniques and theoretical calculations elucidated that cocktail effect and sluggish diffusion originating from the synergistic effect obtained by this combination of elements.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Jiang ◽  
Zhen Lu ◽  
Jie Shen ◽  
Takeshi Wada ◽  
Hidemi Kato ◽  
...  

AbstractGlass transition is one of the unresolved critical issues in solid-state physics and materials science, during which a viscous liquid is frozen into a solid or structurally arrested state. On account of the uniform arrested mechanism, the calorimetric glass transition temperature (Tg) always follows the same trend as the dynamical glass transition (or α-relaxation) temperature (Tα) determined by dynamic mechanical analysis (DMA). Here, we explored the correlations between the calorimetric and dynamical glass transitions of three prototypical high-entropy metallic glasses (HEMGs) systems. We found that the HEMGs present a depressed dynamical glass transition phenomenon, i.e., HEMGs with moderate calorimetric Tg represent the highest Tα and the maximum activation energy of α-relaxation. These decoupled glass transitions from thermal and mechanical measurements reveal the effect of high configurational entropy on the structure and dynamics of supercooled liquids and metallic glasses, which are associated with sluggish diffusion and decreased dynamic and spatial heterogeneities from high mixing entropy. The results have important implications in understanding the entropy effect on the structure and properties of metallic glasses for designing new materials with plenteous physical and mechanical performances.


2021 ◽  
Author(s):  
Hu-Lin Liu ◽  
Feng-Zhen DANG ◽  
De-Wei NI ◽  
Chang-Qing LIU ◽  
Yun-Long XUE ◽  
...  

Abstract We developed a new method to synthesize single-phase transition metal carbide powders by combining citric acid complexing method and ball-milling dispersion. High-entropy carbides (Zr0.25Ti0.25Ta0.25Nb0.25)C (4TmC), (Zr0.2Ti0.2Ta0.2Nb0.2Hf0.2)C (5TmC-H) and (Zr0.2Ti0.2Ta0.2Nb0.2Mo0.2)C (5TmC-M) were successfully fabricated by this method using low-cost raw materials. The element and phase composition and microstructures of the obtained carbide powders were investigated. The relationships of synthesis process and temperature with chemical composition were also discussed. (Zr0.25Ti0.25Ta0.25Nb0.25)C can be obtained by a one-step process at 1550 °C, while (Zr0.2Ti0.2Ta0.2Nb0.2Hf0.2)C and (Zr0.2Ti0.2Ta0.2Nb0.2Mo0.2)C are fabricated by a two-step process of carbothermal reduction followed by solid solution at the temperatures not lower than 1850 °C and 1650 °C. The higher synthesis temperatures of the five-component carbides are attributed to the obvious sluggish diffusion effect induced by the larger lattice distortions. The particle sizes of (Zr0.25Ti0.25Ta0.25Nb0.25)C, (Zr0.2Ti0.2Ta0.2Nb0.2Hf0.2)C and (Zr0.2Ti0.2Ta0.2Nb0.2Mo0.2)C powders are 118.2±26.1 nm (at 1550 °C), 284.8±73.7 nm (at 1850 °C) and 65.5±13.9 nm (at 1750 °C), respectively.


2021 ◽  
Vol 5 (4) ◽  
Author(s):  
Murray S. Daw ◽  
Michael Chandross

2021 ◽  
Vol 29 ◽  
pp. 75-93
Author(s):  
Abhishek Mehta ◽  
Yong Ho Sohn

High entropy alloys (HEAs) are equimolar multi-principal-element alloys (MPEAs) that are different from traditional solvent-based multicomponent alloys based on the concept of alloy design. Based on initial work by Yeh and co-workers, HEAs were postulated to exhibit four “core” effects: high entropy, sluggish diffusion, lattice distortion, and cocktail effect. Out of these four proposed core effects, “high entropy” and “sluggish diffusion” effects were most debated in the literature as these core effects directly affect the thermodynamic and kinetic understanding of HEAs. The initial work on HEAs by several researchers utilized these effects to indirectly support the experimentally observed “unique” properties, without independent investigation of these core effects. The presumed implications of these core effects resulted in justification or generalization of properties to all HEAs, e.g., all HEAs should exhibit high temperature stability based on high entropy effect, high temperature strength owing to limited grain growth, good diffusion barrier application due to sluggish diffusion kinetics, etc. However, many recent studies have challenged these core effects, and suggested that not all HEAs were observed to exhibit these core effects.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Zhong ◽  
Li Chen ◽  
Lijun Zhang

AbstractNowadays, the urgency for the high-quality interdiffusion coefficients and atomic mobilities with quantified uncertainties in multicomponent/multi-principal element alloys, which are indispensable for comprehensive understanding of the diffusion-controlled processes during their preparation and service periods, is merging as a momentous trending in materials community. However, the traditional exploration approach for database development relies heavily on expertize and labor-intensive computation, and is thus intractable for complex systems. In this paper, we augmented the HitDIC (high-throughput determination of interdiffusion coefficients, https://hitdic.com) software into a computation framework for automatic and efficient extraction of interdiffusion coefficients and development of atomic mobility database directly from large number of experimental composition profiles. Such an efficient framework proceeds in a workflow of automation concerning techniques of data-cleaning, feature engineering, regularization, uncertainty quantification and parallelism, for sake of agilely establishing high-quality kinetic database for target alloy. Demonstration of the developed infrastructures was finally conducted in fcc CoCrFeMnNi high-entropy alloys with a dataset of 170 diffusion couples and 34,000 composition points for verifying their reliability and efficiency. Thorough investigation over the obtained kinetic descriptions indicated that the sluggish diffusion is merely unilateral interpretation over specific composition and temperature ranges affiliated to limited dataset. It is inferred that data-mining over large number of experimental data with the combinatorial infrastructures are superior to reveal extremely complex composition- and temperature-dependent thermal–physical properties.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Bhargavi Rani Anne ◽  
Shajahan Shaik ◽  
Masaki Tanaka ◽  
Anindya Basu

AbstractRecently, High entropy alloys (HEAs) advanced into high-temperature applications as potential candidates by enduring high temperatures with high thermal stability, higher oxidation and corrosion resistances, thermal fatigue, and creep resistances. HEAs acquire unique characteristics called core effects of HEAs: high entropy effect, sluggish diffusion effect, severe lattice distortion, and cocktail effect. HEAs frequently exhibit remarkable properties because of having such unique core effects. Thus, the emergence of HEAs has gained significant interest in the field of materials leading to a contemporary point of discussion on their exciting nature and properties. The current review article intends to summarize the significant works on the oxidation behavior of High entropy alloys (HEAs). Also, peculiar attention has been invested in comprehending oxidation behavior of HEAs in the viewpoint of the crystal structure that is BCC-HEAs, FCC-HEAs and few case studies were compared with the conventional alloys. Current challenges and essential future directions in this field are also pointed out.


2021 ◽  
Author(s):  
Jiang Jing ◽  
Zhen Lu ◽  
Jie Shen ◽  
Takeshi Wada ◽  
Hidemi Kato ◽  
...  

Abstract Glass transition is one of the unresolved critical issues in solid-state physics and materials science, during which a viscous liquid is frozen into a solid or structurally arrested state. On account of the uniform arrested mechanism, the calorimetric glass transition temperature (Tg) always follows the same trend as the dynamical glass transition (or α-relaxation) temperature (Tα) determined by dynamic mechanical analysis (DMA). Here, we explored the correlations between the calorimetric and dynamical glass transitions of three prototypical high-entropy metallic glasses (HEMGs) systems. We found that the HEMGs present a depressed dynamical glass transition phenomenon, i.e. HEMGs with moderate calorimetric Tg represent the highest Tα and the maximum activation energy. These decoupled glass transitions from thermal and mechanical measurements reveal the effect of high configurational entropy on the structure and dynamics of supercooled liquids and metallic glasses, which are associated with sluggish diffusion and decreased dynamic and spatial heterogeneities from high mixing entropy. The results have important implications in understanding the entropy effect on the structure and properties of metallic glasses for designing new materials with plenteous physical and mechanical performances.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 98
Author(s):  
Ed J. Pickering ◽  
Alexander W. Carruthers ◽  
Paul J. Barron ◽  
Simon C. Middleburgh ◽  
David E.J. Armstrong ◽  
...  

The expanded compositional freedom afforded by high-entropy alloys (HEAs) represents a unique opportunity for the design of alloys for advanced nuclear applications, in particular for applications where current engineering alloys fall short. This review assesses the work done to date in the field of HEAs for nuclear applications, provides critical insight into the conclusions drawn, and highlights possibilities and challenges for future study. It is found that our understanding of the irradiation responses of HEAs remains in its infancy, and much work is needed in order for our knowledge of any single HEA system to match our understanding of conventional alloys such as austenitic steels. A number of studies have suggested that HEAs possess `special’ irradiation damage resistance, although some of the proposed mechanisms, such as those based on sluggish diffusion and lattice distortion, remain somewhat unconvincing (certainly in terms of being universally applicable to all HEAs). Nevertheless, there may be some mechanisms and effects that are uniquely different in HEAs when compared to more conventional alloys, such as the effect that their poor thermal conductivities have on the displacement cascade. Furthermore, the opportunity to tune the compositions of HEAs over a large range to optimise particular irradiation responses could be very powerful, even if the design process remains challenging.


Sign in / Sign up

Export Citation Format

Share Document