Endocrine Disrupters and Drinking Water

Author(s):  
I. Papadopoulos
2004 ◽  
Vol 50 (5) ◽  
pp. 293-300 ◽  
Author(s):  
W. Bursch ◽  
M. Fuerhacker ◽  
M. Gemeiner ◽  
B. Grillitsch ◽  
A. Jungbauer ◽  
...  

A consortium of Austrian scientists (ARCEM) carried out a multidisciplinary environmental study on Austrian surface and ground waters including chemical monitoring, bioindication, risk assessment and risk management for selected endocrine disrupters: 17β-estradiol, estriol, estrone, 17α-ethinylestradiol, 4-nonylphenol, 4-nonylphenol ethoxylates (4-NP1EO, 4-NP2EO) and their degradation products, ocytlphenol, ocytlphenol ethoxylates (OP1EO, OP2EO) as well as bisphenol A. To obtain data representative for Austria, a material flow analysis served to select relevant compounds and water samples were collected monthly over one year at those sites routinely used in Austrian water quality control. The following results were obtained and conclusions drawn:1. Chemical monitoring: As compared to other countries, relatively low levels of pollution with endocrine disrupters were detected.2. Bioindication: In the surface waters under study, male fish showed significant signs of feminization and demasculinization (increased production of the egg-yolk protein and histological changes of the gonads.3. Risk assessment: For humans, exposure via either drinking water abstraction (ground water) or fish consumption was considered. The exposure levels of the compounds under study were below those considered to result in human health risks. Likewise, for bisphenol A and octylphenols, there was no indication for risk posed upon the aquatic environment (fish). However, nonylphenol or 17a-ethinylestradiol exposure along with results of bioindication (2) suggest a borderline estrogenic activity in a considerable number of surface waters. Consequently the emissions of these substances into the surface waters affected have to be reduced.4. Risk management: Waste water treatment experiments revealed a positive correlation between the removal rate of endocrine disrupters from the waste water and the sludge retention time in the treatment plants. These substances are removed to a higher extend at low loaded plants designed for nutrient removal than at plants that remove carbon and/or employ nitrification only. As to drinking water treatment, chlorine dioxide and ozone were found to eliminate all investigated substances, except nonylphenol ethoxylates. (For the complete study see: www.arcem.at)


2005 ◽  
Vol 52 (8) ◽  
pp. 279-286 ◽  
Author(s):  
M. Mastrup ◽  
A.I. Schäfer ◽  
S.J. Khan

The risk of endocrine disrupters to humans and wildlife is to date poorly understood, although evidence of effects is now widespread. In understanding the risk, an important step is the determination of the partitioning, as well as chemical and biochemical transformation, of compounds in the environment, the water cycle and the food chain. This is a complex task and this paper is a first step towards estimating some of these factors from a largely theoretical approach. A chemical fate model is used to predict the fate of the contraceptive drug 17α-ethinylestradiol (EE2). The example of the contraceptive pill is chosen to follow the journey of the drug from human ingestion and excretion to treatment in a sewage treatment plant (STP) using fugacity-based fate models, followed by discharge into a receiving river and eventually into the estuary/sea. The model predicts how EE2 will partition into the different compartments during each stage of this journey and thereby infiltrate into the food chain. The results suggest that a person would have to ingest more than 30,000 portions of fish to consume an equivalent to a single average dose of the contraceptive pill. While this scenario is highly unlikely, the biochemical consequence of the contraceptive pill is greatly significant. Furthermore, there are many identified similarly estrogenic compounds in the environment while this study only considers one. Cumulative effects of such compounds as well as degradation into other potent compounds may be anticipated. An important message in this paper is the interrelation of wastewater effluent discharge and eventual human exposure of marginally degradable and lipophilic chemicals. While at present the main concerns regarding endocrine disrupters appear to be the fear of their occurrence in drinking water sources, it is clear that the domains of wastewater treatment and discharge, water supply and contamination of food should not be treated as separate issues. The model suggests that exposure from food (contaminated by effluent) may be much more significant than from drinking water.


Author(s):  
Rowena H. Gee ◽  
Leon S. Rockett ◽  
Paul C. Rumsby

Author(s):  
Diego R. S. Lima ◽  
Robson J. C. F. Afonso ◽  
Marcelo Libânio ◽  
Sérgio F. de Aquino

1985 ◽  
Vol 6 (2) ◽  
pp. 52-58 ◽  
Author(s):  
Susan T. Bagley

AbstractThe genus Klebsiella is seemingly ubiquitous in terms of its habitat associations. Klebsiella is a common opportunistic pathogen for humans and other animals, as well as being resident or transient flora (particularly in the gastrointestinal tract). Other habitats include sewage, drinking water, soils, surface waters, industrial effluents, and vegetation. Until recently, almost all these Klebsiella have been identified as one species, ie, K. pneumoniae. However, phenotypic and genotypic studies have shown that “K. pneumoniae” actually consists of at least four species, all with distinct characteristics and habitats. General habitat associations of Klebsiella species are as follows: K. pneumoniae—humans, animals, sewage, and polluted waters and soils; K. oxytoca—frequent association with most habitats; K. terrigena— unpolluted surface waters and soils, drinking water, and vegetation; K. planticola—sewage, polluted surface waters, soils, and vegetation; and K. ozaenae/K. rhinoscleromatis—infrequently detected (primarily with humans).


Sign in / Sign up

Export Citation Format

Share Document