chemical monitoring
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 40)

H-INDEX

24
(FIVE YEARS 3)

2023 ◽  
Vol 83 ◽  
Author(s):  
G. B. M. Santos ◽  
G. Boehs

Abstract Estuaries receive daily inputs of chemical elements which can impact the quality of water and sediment, as well as the health of biota. In addition to the sediment, bivalve mollusks have been used in the chemical monitoring of these systems. This study investigated the presence and contents of As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in superficial sediment and in bivalves (Crassostrea gasar, C. rhizophorae and Mytella guyanensis) from estuaries in the south / extreme south of Bahia State, northeast Brazil. The samples were evaluated with inductively coupled plasma optical emission spectrometry (ICP-OES, Varian 710). Except for Cd, all other elements were found in the samples, being that Co was exclusive in the sediment. The estuaries equivalent to sampling stations #1 - Valença, #2 - Taperoá, #3 - Ilhéus and #4 - Belmonte showed levels of metals compatibles with those established by the Brazilian legislation, however, the #5 - Santa Cruz Cabrália, in addition to the presence of As, presented a high level of Pb and Cu in C. gasar, which was attributed to the impacts of nautical activities in that locality.


2022 ◽  
Vol 11 (6) ◽  
pp. 667-675
Author(s):  
Amina-Afaf MOUFFAK

Furfural is one of the petroleum products posing a potential danger to the environment and human health. However, the decontamination of these pollutants released into the environment is primarily governed by biodegra-dation processes. This study is based on biodegradation kinetics at increasing concentrations of furfural by natural mixed culture in order to assess the potential of this process in the elimination of furfural from petrochemical effluents from the ARZEW refinery. This biodegradation was measured through physicochemical parameters such as pH, electrical conductivity, con-centration of hydrocarbons, the chemical oxygen demand (COD), biochemi-cal oxygen demand (BOD5) and the concentration of furfural. The results obtained show at a concentration of 250ppm of injected furfural: a decrease in pH 4.9 and an increase in other parameters (conductivity 3450 μS.cm-1, HC 102 mg / l; furfural 210 ppm, COD 327mg / l, BOD5 98mgO2 / l. The study findings indicated that the injection of these effluents with concentrations greater than 180 ppm leads to values of pH, EC, HC, Furfural, COD, BOD5 which do not comply with direct discharge standards and disrupt biological treatment. The high levels of furfural not only cause a pollution problem but can also disrupt the functioning of bacteria at the biological treatment level. Therefore, dilution with the filtration wash water before switching to biologi-cal treatment is recommended in order to reduce the concentrations below 180 ppm.


2021 ◽  
Vol 50 (3) ◽  
pp. 289-299
Author(s):  
Perrine Freydier ◽  
Eric Weber ◽  
Jérôme Martin ◽  
Pierre-Yves Jeannin ◽  
Béatrice Guerrier ◽  
...  

Vermiculations are aggregates of small particles commonly found on cave walls. They are a major concern for the conservation of painted caves, as they can potentially alter valuable prehistoric cave paintings. A previous rheological study of fine sediment deposits on cave walls revealed that this material can undergo a solid-to-liquid transition triggered by variations in the chemical composition of the water film on the wall. Such a transition could occur at the origin of vermiculations by allowing the sediment to flow under low mechanical stress. In this work, we provide quantitative information on the conditions leading to this transition and show the importance of the chemical composition of the water film on the cave walls. A complete understanding of the phenomenon will, however, require more field information. This includes monitoring of the evolution of vermiculations, for which we have developed a dedicated observation protocol. Based on the combination of photogrammetry and a geographic information system we were able to precisely map the walls of the Hall of Bulls in Lascaux cave from past and future photographs. To better understand the vermiculation process, pictures need to be taken regularly, and the chemical composition of the thin water film covering cave walls needs to be analyzed with a similar time step. The correlation between the evolution of vermiculations, the humidification phases of the walls, temperature changes and the chemical monitoring of the water film should shed new light on conditions triggering vermiculations.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1528
Author(s):  
Zsolt Cimer ◽  
Gyula Vass ◽  
Attila Zsitnyányi ◽  
Lajos Kátai-Urbán

As a result of economic development and an increase in the volume of industrial production, the use of dangerous substances is increasing despite the fact that most industrial facilities are committed to the principles of environmental protection and sustainable development. Protection of human health and the environment is ensured at the local level by the local safety system. Major accidents typically have an off-site impact that also affects the general public. The most significant asymmetric event is when toxic substances are release into a populated area following a major accident. Early warning systems can significantly reduce the harmful consequences of major accidents that may occur. The operation of a reliable and effective chemical monitoring and public alarm system can be used as a basic device of defence. This ultimately means restoring the symmetry of the local safety system. It was an important scientific objective in Hungary to identify the facilities endangering the population where it is necessary to install chemical monitoring and early warning external protection systems. In this context, the main objective of this study was to present dangerous plant identification methodology and to analyse and evaluate the results of the application of this methodology.


2021 ◽  
Author(s):  
John R. Lovell ◽  
Omar Kulbrandstad ◽  
Sai Madem ◽  
Daniel Meza

Abstract Managing asphaltene accumulation in offshore Gulf-of-Mexico wells is a significant challenge. Until recently there was no real-time chemical monitoring that could advise on whether chemical inhibition was making a particular well more, or less, stable. This changed with the development of real-time hardware that directly measures the ratio of asphaltene flowing in the oil. A new generation of that hardware has now been launched which meets all of the Qualification and HSE requirements for deployment on offshore platforms. A microwave resonator was designed to receive fluid at wellhead conditions, i.e., without a reduction in pressure or temperature, and the parameters of that resonator were optimized to maximize microwave intensity for typical oilfield fluids. The microwave circuitry is incorporated in an explosion-proof container with Class 1 Div 2 rated electrical and fluid connections. By combining that resonator with a solenoid that can generate a large magnetic field around a flowline, the resulting device resonates electrons within asphaltene molecules to create a unique signature that is proportional to the total asphaltene count. Estimates of oil-water cut and gas-oil ratio are also obtained as part of the processing and this combination gives the percentage of asphaltene within the oil. The use of this hardware with controlling software and cloud processing creates a unique Internet-of-Things device which can be used to optimize asphaltene-related flow assurance challenges offshore. Pressure testing up to 5ksi and 120C gives the device a working envelope well exceeding typical offshore production hardware requirements. For a fixed fluid, the computation of asphaltene ratio was shown to be independent of applied pressure. Conversely, it was found that in a live well chemical properties of fluids can change over the course of a few hours even when the surface pressure and flow-rates stay the same. In one well, the surface asphaltene percentage within an oil was seen to vary from 0.3% to 3% because of alternating deposition and erosion of an asphaltene layer that had been forming along the ID of production tubing. Over the course of a series of tests in the Middle East, it was observed that those wells with uniform asphaltene percentage were seen as less troublesome to manage compared to wells with a higher deviation. In two Permian fields subject to CO2 flooding, a geographic variation in asphaltene percentage which correlated to the long-term exposure to injected gas was observed. It has long been standard for chemical properties of fluids to be obtained by sending samples to a lab. This paper demonstrates additional value that can be obtained from getting that data in real-time, especially when viewed in the context of an overall chemical management program.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 130
Author(s):  
Wiem Sdiri ◽  
Samia Dabbou ◽  
Vincenzo Nava ◽  
Giuseppa Di Bella ◽  
Hedi Ben Mansour

In this work, the pomological characteristics, phenolic composition, and chemical contents modification in response to treated wastewater (TWW) irrigation was studied on olive fruits. The experiment was carried out during two successive years (2016/2017) on olive trees (cv. Chemlali). Three irrigation treatments were adopted and two TWW irrigation levels were applied (T1: 20% ETc; T2: 40% ETc; CT: Control Treatment (rainfed condition)). Results show that TWW irrigation leads to increased fruit fresh weight and water content, whatever the level applied. In addition, fruit oil content remained unaffected by TWW irrigation. Moreover, this agronomic practice preserves some phenolic compound contents like verbascoside, therefore fruits nutritional value. A positive feature was then observed following TWW irrigation. In fact, oleuropein, tyrosol, luteolin-7-glucoside, and pinoresinol amounts were enhanced in treated olive fruits. On the other hand, TWW irrigated trees with a level of 40% ETc (T2) produced olive fruits richer in Mg and K than those cultivated in rainfed conditions (CT). Fruits Zn, Mn, and Pb contents decreased as a result of olive trees TWW irrigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ian John Allan ◽  
Branislav Vrana ◽  
Jasperien de Weert ◽  
Alfhild Kringstad ◽  
Anders Ruus ◽  
...  

AbstractThe identification and prioritisation of water bodies presenting elevated levels of anthropogenic chemicals is a key aspect of environmental monitoring programmes. Albeit this is challenging owing to geographical scales, choice of indicator aquatic species used for chemical monitoring, and inherent need for an understanding of contaminant fate and distribution in the environment. Here, we propose an innovative methodology for identifying and ranking water bodies according to their levels of hydrophobic organic contaminants (HOCs) in water. This is based on a unique passive sampling dataset acquired over a 10-year period with silicone rubber exposures in surface water bodies across Europe. We show with these data that, far from point sources of contamination, levels of hexachlorobenzene (HCB) and pentachlorobenzene (PeCB) in water approach equilibrium with atmospheric concentrations near the air/water surface. This results in a relatively constant ratio of their concentrations in the water phase. This, in turn, allows us to (i) identify sites of contamination with either of the two chemicals when the HCB/PeCB ratio deviates from theory and (ii) define benchmark levels of other HOCs in surface water against those of HCB and/or PeCB. For two polychlorinated biphenyls (congener 28 and 52) used as model chemicals, differences in contamination levels between the more contaminated and pristine sites are wider than differences in HCB and PeCB concentrations endorsing the benchmarking procedure.


Sign in / Sign up

Export Citation Format

Share Document