High Frequency Earthquake Strong Ground Motion in Laterally Varying Media: The Effect of a Fault Zone

1987 ◽  
pp. 209-224 ◽  
Author(s):  
Gregory C. Beroza ◽  
Vernon F. Cormier
2020 ◽  
Vol 110 (2) ◽  
pp. 452-470
Author(s):  
Masato Tsurugi ◽  
Reiji Tanaka ◽  
Takao Kagawa ◽  
Kojiro Irikura

ABSTRACT We examined high-frequency spectral decay characteristics of ground motions for inland crustal earthquakes in Japan, which are important in strong ground motion predictions. We examined 105 earthquakes (Mw 3.3–7.1), including seven large earthquakes (Mw 5.9–7.1). Spectral decay characteristics were accurately evaluated assuming the ω-squared source model and using two approaches: the fmax model (commonly used in Japan), described by the cutoff frequency fmax and the power coefficient of spectral decay s, and the κ model (commonly used in worldwide), the exponential spectral decay model, described by the parameter κ and the specific frequency fE at which a spectrum starts to decrease linearly with increasing frequency in log–linear space. For large earthquakes, we estimated fmax to range from 6.5 to 9.9 Hz and s from 0.78 to 1.60 in the fmax model, and κ to range from 0.014 to 0.051 s and fE from 2 to 4.5 Hz in the κ model. In both approaches, we found that the spectral decay characteristics are regionally dependent. fmax in the fmax model and fE in the κ model tended to be smaller for large earthquakes than for moderate and small earthquakes, clearly demonstrating a seismic moment dependency. We confirmed positive correlations between equivalent parameters of the two approaches, that is, between s and κ and between fmax and fE. Moreover, we found that both approaches are appropriate for evaluating spectral decay characteristics, as long as the spectral decay parameters are appropriately evaluated by comparison with observed spectra. We examined the effects of the spectral decay characteristics on strong ground motion predictions, and demonstrated that simulated motions corrected using the fmax model and those corrected using the κ model are almost the same. The results presented in this article contribute to improving predictions of high-frequency strong ground motion.


1998 ◽  
Vol 88 (4) ◽  
pp. 1070-1078 ◽  
Author(s):  
James N. Brune ◽  
Abdolrasool Anooshehpoor

Abstract We report results of foam rubber modeling of the effect of a shallow weak layer on ground motion from strike-slip ruptures. Computer modeling of strong ground motion from strike-slip earthquakes has in some cases involved somewhat arbitrary assumptions about the nature of slip along the shallow part of the fault (e.g., fixing the slip to be zero along the upper 2 km of the fault plane). Fault-slip inversion studies indicate that the high-frequency radiation from the shallow part of strike-slip faults is typically less than that for the deeper parts of the fault. In many cases, faults (1) may be weak along the upper few kilometers of the fault zone and may not be able to maintain high levels of shear strain required for high dynamic energy release during earthquakes and (2) may have different constitutive relations for fault slip, for example, slip strengthening. The object of this article is to present results of physical modeling using a shallow weak layer, in order to support the physical basis for assuming a long rise time and a reduced high-frequency pulse for the slip on the shallow part of faults. A weak zone was modeled by inserting weak plastic layers of a few inches in width into the foam rubber model. The long-term strength of the weak layer is about an order of magnitude less than the rest of the model. The transient strength is velocity strengthening with the strength estimated to be about three times higher at slip velocities typical of dynamic slip events. It appears a 2-km-deep, weak zone along strike-slip faults could indeed reduce the high-frequency energy radiated from shallow slip and that this effect can best be represented by superimposing a small-amplitude, short rise-time pulse at the onset of a much longer rise-time slip. For the 15-cm weak zone, the average pulse amplitude is reduced by a factor of about 0.4. The reduction factor for the 20-cm case is about 0.2. For the 30-cm case, it is about 0.1. From these results, we can see that the thicker the weak layer, the more difficult it is for a short rise-time acceleration pulse to push its way through the weak layer to the surface. The velocity strengthening property of the weak layer further damps the slip motion and increases the rise time. These results support reducing the high-frequency radiation from shallower parts of strike-slip faults in modeling studies if it is known that the shallow part of the fault is weak or has not stored up a large shear stress.


2020 ◽  
Vol 104 (1) ◽  
pp. 437-457
Author(s):  
Anup K. Sutar ◽  
Mithila Verma ◽  
Brijesh K. Bansal ◽  
Ajeet P. Pandey

2013 ◽  
Vol 8 (2) ◽  
pp. 235-242 ◽  
Author(s):  
Nelson Pulido ◽  
◽  
Hernando Tavera ◽  
Zenon Aguilar ◽  
Shoichi Nakai ◽  
...  

We investigated the broadband frequency (0.05-30 Hz) radiation characteristics of the August 15, 2007, Mw8.0 Pisco, Peru, earthquake by simulating the near-source strong ground motion recordings in Parcona city (PCN) and Lima city (NNA). A source model of this earthquake obtained from long-period teleseismic waveforms and InSar data shows two separate asperities, which is consistent with the observation of two distinct episodes of strong shaking in strong motion recordings. We constructed a source model that reproduces near-source records at low frequency (0.05-0.8 Hz) as well as high frequency (0.8-30 Hz) bands. Our results show that the aforementioned teleseismic source model is appropriate for simulating near-source low frequency ground motion. Our modeling of the PCN record in the broad-frequency band indicates that a very strong high frequency radiation event likely occurred near the hypocenter, which generated a large acceleration peak within the first episode of strong shaking at PCN. Using this “broadband frequency” source model we simulated the strong ground motion at Pisco city and obtained accelerations as large as 700 cm/s2and velocities as high as 90 cm/s, respectively, which may explain the heavy damage occurring in the city.


Sign in / Sign up

Export Citation Format

Share Document