The Influence of Tilt Angle and Magnetic Field Variations on Cosmic Ray Modulation

Author(s):  
G. Wibberenz ◽  
H. V. Cane ◽  
I. G. Richardson ◽  
T. T. Von Rosenvinge
2009 ◽  
Vol 43 (4) ◽  
pp. 673-679 ◽  
Author(s):  
R.T. Gushchina ◽  
A.V. Belov ◽  
V.N. Obridko ◽  
B.D. Shelting

2019 ◽  
Vol 37 (3) ◽  
pp. 299-314 ◽  
Author(s):  
Christoph Lhotka ◽  
Yasuhito Narita

Abstract. Current knowledge on the description of the interplanetary magnetic field is reviewed with an emphasis on the kinematic approach as well as the analytic expression. Starting with the Parker spiral field approach, further effects are incorporated into this fundamental magnetic field model, including the latitudinal dependence, the poleward component, the solar cycle dependence, and the polarity and tilt angle of the solar magnetic axis. Further extensions are discussed in view of the magnetohydrodynamic treatment, the turbulence effect, the pickup ions, and the stellar wind models. The models of the interplanetary magnetic field serve as a useful tool for theoretical studies, in particular on the problems of plasma turbulence evolution, charged dust motions, and cosmic ray modulation in the heliosphere.


1993 ◽  
Vol 98 (A3) ◽  
pp. 3585-3603 ◽  
Author(s):  
John W. Bieber ◽  
Jiasheng Chen ◽  
William H. Matthaeus ◽  
Charles W. Smith ◽  
Martin A. Pomerantz

2018 ◽  
Author(s):  
Christoph Lhotka ◽  
Yasuhito Narita

Abstract. Current knowledge on the description of the interplanetary magnetic field is reviewed with an emphasis on the kinematic approach as well as the analytic expression. Starting with the Parker spiral field approach, further effects are incorporated into this fundamental magnetic field model, including the latitudinal dependence, the northward component, the solar cycle dependence, and the polarity and tilt angle of the solar magnetic axis. Further extensions are discussed in view of the magnetohydrodynamic treatment, the turbulence effect, the pickup ions, and the stellar wind models. The models of the interplanetary magnetic field serve as a useful tool for theoretical studies, in particular on the problems of plasma turbulence evolution, charged dust motions, and cosmic ray modulation in the heliosphere.


Sign in / Sign up

Export Citation Format

Share Document