Long-term variations of interplanetary magnetic field spectra with implications for cosmic ray modulation

1993 ◽  
Vol 98 (A3) ◽  
pp. 3585-3603 ◽  
Author(s):  
John W. Bieber ◽  
Jiasheng Chen ◽  
William H. Matthaeus ◽  
Charles W. Smith ◽  
Martin A. Pomerantz
Solar Physics ◽  
1975 ◽  
Vol 45 (1) ◽  
pp. 241-254 ◽  
Author(s):  
F. Mariani ◽  
L. Diodato ◽  
G. Moreno

2019 ◽  
Vol 37 (3) ◽  
pp. 299-314 ◽  
Author(s):  
Christoph Lhotka ◽  
Yasuhito Narita

Abstract. Current knowledge on the description of the interplanetary magnetic field is reviewed with an emphasis on the kinematic approach as well as the analytic expression. Starting with the Parker spiral field approach, further effects are incorporated into this fundamental magnetic field model, including the latitudinal dependence, the poleward component, the solar cycle dependence, and the polarity and tilt angle of the solar magnetic axis. Further extensions are discussed in view of the magnetohydrodynamic treatment, the turbulence effect, the pickup ions, and the stellar wind models. The models of the interplanetary magnetic field serve as a useful tool for theoretical studies, in particular on the problems of plasma turbulence evolution, charged dust motions, and cosmic ray modulation in the heliosphere.


Radiocarbon ◽  
1980 ◽  
Vol 22 (2) ◽  
pp. 133-158 ◽  
Author(s):  
Giuliana Castagnoli ◽  
Devendra Lal

This paper is concerned with the expected deviations in the production rate of natural 14C on the earth due to changes in solar activity. We review the published estimates of the global production rates of 14C due to galactic and solar cosmic ray particles, and present new estimates of the expected secular variations in 14C production, taking into account the latest information available on galactic cosmic ray modulation and long-term variations in solar activity.


Author(s):  
Fraser Baird ◽  
Alexander MacKinnon

For the first time, based on the experimental data of AMS-02, a three-parameter spectrum of variations of ga - lactic cosmic rays was obtained in the range of rigidity 1- 20 GV, to which neutron monitors are most sensitive. It was found that during the period of negative polarity of the solar magnetic field, a power-law spectrum of va - riations is observed with a strong exponential decay in the region of high rigidity. When the polarity changes to positive at the beginning of the new 24th solar cycle, the spectrum of cosmic ray variations becomes purely po- wer-law. The transition to the experimentally obtained spectrum of variations will make it possible to remove a number of uncertainties and increase the accuracy of the analysis of data from the ground network of detectors. This will make it possible to retrospectively obtain fluxes of galactic protons with an average monthly resolution for the period of the space era based on ground-based monitoring.


2018 ◽  
Author(s):  
Christoph Lhotka ◽  
Yasuhito Narita

Abstract. Current knowledge on the description of the interplanetary magnetic field is reviewed with an emphasis on the kinematic approach as well as the analytic expression. Starting with the Parker spiral field approach, further effects are incorporated into this fundamental magnetic field model, including the latitudinal dependence, the northward component, the solar cycle dependence, and the polarity and tilt angle of the solar magnetic axis. Further extensions are discussed in view of the magnetohydrodynamic treatment, the turbulence effect, the pickup ions, and the stellar wind models. The models of the interplanetary magnetic field serve as a useful tool for theoretical studies, in particular on the problems of plasma turbulence evolution, charged dust motions, and cosmic ray modulation in the heliosphere.


1968 ◽  
Vol 46 (10) ◽  
pp. S950-S953 ◽  
Author(s):  
J. R. Jokipii

The observed change in cosmic-ray modulation from 1963–64 to 1965 may be associated with a corresponding change in the magnetic-field power spectra between 1962 and 1965, as obtained from Mariner 2 and Mariner 4 magnetometer data, respectively. It is further suggested that the diffusion mean-free-path λ may approach a constant value approximately equal to the correlation length of the magnetic field for very-low-rigidity particles.


Sign in / Sign up

Export Citation Format

Share Document