Control of Photosynthetic Rate: Influence of Light Harvesting and Electron Transport Capacity in Different Environments

Author(s):  
Norman Terry
2021 ◽  
Author(s):  
Maria Ermakova ◽  
Chandra Bellasio ◽  
Duncan Fitzpatrick ◽  
Robert T. Furbank ◽  
Fikret Mamedov ◽  
...  

AbstractC4 photosynthesis is a biochemical pathway that operates across mesophyll and bundle sheath (BS) cells to increase CO2 concentration at the site of CO2 fixation. C4 plants benefit from high irradiance but their efficiency decreases under shade causing a loss of productivity in crop canopies. We investigated shade acclimation responses of a model NADP-ME monocot Setaria viridis focussing on cell-specific electron transport capacity. Plants grown under low light (LL) maintained CO2 assimilation rates similar to high light plants but had an increased chlorophyll and light-harvesting-protein content, predominantly in BS cells. Photosystem II (PSII) protein abundance, oxygen-evolving activity and the PSII/PSI ratio all increased in LL BS cells indicating a higher capacity for linear electron flow. PSI, ATP synthase, Cytochrome b6f and the chloroplastic NAD(P) dehydrogenase complex, which constitute the BS cyclic electron flow machinery, were all upregulated in LL plants. A decline in PEP carboxylase activity in mesophyll cells and a consequent shortage of reducing power in BS chloroplasts was associated with the more oxidised redox state of the plastoquinone pool in LL plants and the formation of PSII - light-harvesting complex II supercomplexes with an increased oxygen evolution rate. Our results provide evidence of a redox regulation of the supramolecular composition of Photosystem II in BS cells in response to shading. This newly identified link contributes to understanding the regulation of PSII activity in C4 plants and will support strategies for crop improvement including the engineering of C4 photosynthesis into C3 plants.Significance statementThe efficiency of C4 photosynthesis decreases under low irradiance causing a loss of productivity in crop canopies. We investigate shade acclimation of a model NADP-ME monocot, analysing cell-specific protein expression and electron transport capacity. We propose a regulatory pathway controlling abundance and activity of Photosystem II in bundle sheath cells in response to irradiance.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20446-20456
Author(s):  
Xi Ma ◽  
Ziwei Wang ◽  
Haoguo Yang ◽  
Yiqiu Zhang ◽  
Zizhong Zhang ◽  
...  

Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246180
Author(s):  
Jayeeta Kolay ◽  
Sudipta Bera ◽  
Rupa Mukhopadhyay

One major obstacle in development of biomolecular electronics is the loss of function of biomolecules upon their surface-integration and storage. Although a number of reports on solid-state electron transport capacity of proteins have been made, no study on whether their functional integrity is preserved upon surface-confinement and storage over a long period of time (few months) has been reported. We have investigated two specific cases—collagen and ferritin proteins, since these proteins exhibit considerable potential as bioelectronic materials as we reported earlier. Since one of the major factors for protein degradation is the proteolytic action of protease, such studies were made under the action of protease, which was either added deliberately or perceived to have entered in the reaction vial from ambient environment. Since no significant change in the structural characteristics of these proteins took place, as observed in the circular dichroism and UV-visible spectrophotometry experiments, and the electron transport capacity was largely retained even upon direct protease exposure as revealed from the current sensing atomic force spectroscopy experiments, we propose that stable films can be formed using the collagen and ferritin proteins. The observed protease-resistance and robust nature of these two proteins support their potential application in bioelectronics.


Sign in / Sign up

Export Citation Format

Share Document