Recent Variability in Sea Ice Cover, Age, and Thickness in the Pacific Arctic Region

2014 ◽  
pp. 31-63 ◽  
Author(s):  
Karen E. Frey ◽  
James A. Maslanik ◽  
Jaclyn Clement Kinney ◽  
Wieslaw Maslowski
Keyword(s):  
Sea Ice ◽  
PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255837
Author(s):  
Catherine Lalande ◽  
Jacqueline M. Grebmeier ◽  
Andrew M. P. McDonnell ◽  
Russell R. Hopcroft ◽  
Stephanie O’Daly ◽  
...  

Unusually warm conditions recently observed in the Pacific Arctic region included a dramatic loss of sea ice cover and an enhanced inflow of warmer Pacific-derived waters. Moored sediment traps deployed at three biological hotspots of the Distributed Biological Observatory (DBO) during this anomalously warm period collected sinking particles nearly continuously from June 2017 to July 2019 in the northern Bering Sea (DBO2) and in the southern Chukchi Sea (DBO3), and from August 2018 to July 2019 in the northern Chukchi Sea (DBO4). Fluxes of living algal cells, chlorophyll a (chl a), total particulate matter (TPM), particulate organic carbon (POC), and zooplankton fecal pellets, along with zooplankton and meroplankton collected in the traps, were used to evaluate spatial and temporal variations in the development and composition of the phytoplankton and zooplankton communities in relation to sea ice cover and water temperature. The unprecedented sea ice loss of 2018 in the northern Bering Sea led to the export of a large bloom dominated by the exclusively pelagic diatoms Chaetoceros spp. at DBO2. Despite this intense bloom, early sea ice breakup resulted in shorter periods of enhanced chl a and diatom fluxes at all DBO sites, suggesting a weaker biological pump under reduced ice cover in the Pacific Arctic region, while the coincident increase or decrease in TPM and POC fluxes likely reflected variations in resuspension events. Meanwhile, the highest transport of warm Pacific waters during 2017–2018 led to a dominance of the small copepods Pseudocalanus at all sites. Whereas the export of ice-associated diatoms during 2019 suggested a return to more typical conditions in the northern Bering Sea, the impact on copepods persisted under the continuously enhanced transport of warm Pacific waters. Regardless, the biological pump remained strong on the shallow Pacific Arctic shelves.


2015 ◽  
Vol 136 ◽  
pp. 32-49 ◽  
Author(s):  
Karen E. Frey ◽  
G.W.K. Moore ◽  
Lee W. Cooper ◽  
Jacqueline M. Grebmeier
Keyword(s):  
Sea Ice ◽  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue

AbstractArctic sea ice is rapidly decreasing during the recent period of global warming. One of the significant factors of the Arctic sea ice loss is oceanic heat transport from lower latitudes. For months of sea ice formation, the variations in the sea surface temperature over the Pacific Arctic region were highly correlated with the Pacific Decadal Oscillation (PDO). However, the seasonal sea surface temperatures recorded their highest values in autumn 2018 when the PDO index was neutral. It is shown that the anomalous warm seawater was a rapid ocean response to the southerly winds associated with episodic atmospheric blocking over the Bering Sea in September 2018. This warm seawater was directly observed by the R/V Mirai Arctic Expedition in November 2018 to significantly delay the southward sea ice advance. If the atmospheric blocking forms during the PDO positive phase in the future, the annual maximum Arctic sea ice extent could be dramatically reduced.


2012 ◽  
Vol 9 (11) ◽  
pp. 4835-4850 ◽  
Author(s):  
P. Coupel ◽  
H. Y. Jin ◽  
M. Joo ◽  
R. Horner ◽  
H. A. Bouvet ◽  
...  

Abstract. A large part of the Pacific Arctic basin experiences ice-free conditions in summer as a result of sea ice cover steadily decreasing over the last decades. To evaluate the impact of sea ice retreat on the marine ecosystem, phytoplankton in situ observations were acquired over the Chukchi shelf and the Canadian basin in 2008, a year of high melting. Pigment analyses and taxonomy enumerations were used to characterise the distribution of main phytoplanktonic groups. Marked spatial variability of the phytoplankton distribution was observed in summer 2008. Comparison of eight phytoplankton functional groups and 3 size-classes (pico-, nano- and micro-phytoplankton) also showed significant differences in abundance, biomass and distribution between summer of low ice cover (2008) and heavy ice summer (1994). Environmental parameters such as freshening, stratification, light and nutrient availability are discussed as possible causes to explain the observed differences in phytoplankton community structure between 1994 and 2008.


2012 ◽  
Vol 9 (2) ◽  
pp. 2055-2093 ◽  
Author(s):  
P. Coupel ◽  
H. Y. Jin ◽  
M. Joo ◽  
R. Horner ◽  
H. A. Bouvet ◽  
...  

Abstract. A large part of the Pacific Arctic basin experiences ice-free conditions in summer as a result of sea ice cover steadily decreasing over the last decades. To evaluate the impact of ice retreat on the Arctic ecosystem, we investigated phytoplankton communities from coastal sites (Chukchi shelf) to northern deep basins (up to 86° N), during year 2008 of high melting. Pigment and taxonomy in situ data were acquired under different ice regime: the ice -free basins (IFB, 74°–77° N), the marginal ice zone (MIZ, 77°–80° N) and the heavy ice covered basins (HIB, >80° N). Our results suggest that extensive ice melting provided favorable conditions to chrysophytes and prymnesiophytes growth and more hinospitable to pico-sized prasinophytes and micro-sized dinoflagellates. Larger cell diatoms were less abundant in the IFB while dominant in the MIZ of the deep Canadian basin. Our data were compared to those obtained during more icy years, 1994 and to a lesser extent, 2002. Freshening, stratification, light and nutrient availability are discussed as possible causes for observed phytoplankton communities under high and low sea ice cover.


2021 ◽  
Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue

<p>Arctic sea ice is rapidly decreasing during the recent period of global warming. One of the significant factors of the Arctic sea ice loss is oceanic heat transport from lower latitudes. For months of sea ice formation, the variations in the sea surface temperature over the Pacific Arctic region were highly correlated with the Pacific Decadal Oscillation (PDO). However, the seasonal sea surface temperatures recorded their highest values in autumn 2018 when the PDO index was neutral. It is shown that the anomalous warm seawater was a rapid ocean response to the southerly winds associated with episodic atmospheric blocking over the Bering Sea in September 2018. This warm seawater was directly observed by the R/V Mirai Arctic Expedition in November 2018 to significantly delay the southward sea ice advance. If the atmospheric blocking forms during the PDO positive phase in the future, the annual maximum Arctic sea ice extent could be dramatically reduced.</p>


Author(s):  
Muyin Wang ◽  
Qiong Yang ◽  
James E. Overland ◽  
Phyllis Stabeno
Keyword(s):  
Sea Ice ◽  

2021 ◽  
Author(s):  
Yuri Fukai ◽  
Kohei Matsuno ◽  
Amane Fujiwara ◽  
Koji Suzuki ◽  
Mindy Richlen ◽  
...  

2016 ◽  
Vol 12 (9) ◽  
pp. 20160251 ◽  
Author(s):  
Sue E. Moore

The marine ecosystem in the Pacific Arctic region has experienced dramatic transformation, most obvious by the loss of sea ice volume (75%), late-summer areal extent (50%) and change in phenology (four to six weeks longer open-water period). This alteration has resulted in an opening of habitat for subarctic species of baleen whales, many of which are recovering in number from severe depletions from commercial whaling in the nineteenth and twentieth centuries. Specifically, humpback, fin and minke whales ( Megaptera novaeangliae , Balaenoptera physalus and Balaenoptera acutorostrata ) are now regularly reported during summer and autumn in the southern Chukchi Sea. These predators of zooplankton and forage fishes join the seasonally resident grey whale ( Eschrichtius robustus ) and the arctic-endemic bowhead whale ( Balaena mysticetus ) in the expanding open-ocean habitat of the Pacific Arctic. Questions arising include: (i) what changes in whale-prey production and delivery mechanisms have accompanied the loss of sea ice, and (ii) how are these five baleen whale species partitioning the expanding ice-free habitat? While there has been no programme of research specifically focused on these questions, an examination of seasonal occurrence, foraging plasticity and (for bowhead whales) body condition suggests that the current state of Pacific Arctic marine ecosystem may be ‘boom times’ for baleen whales. These favourable conditions may be moderated, however, by future shifts in ecosystem structure and/or negative impacts to cetaceans related to increased commercial activities in the region.


Sign in / Sign up

Export Citation Format

Share Document