An Overview of Paleoenvironmental Techniques for the Reconstruction of Past Arctic Ice Shelf Dynamics

Author(s):  
Dermot Antoniades
Keyword(s):  
1998 ◽  
Vol 44 (147) ◽  
pp. 419-428 ◽  
Author(s):  
Douglas R MacAyeal ◽  
Eric Rignot ◽  
Christina L Hulbe

AbstractWe compare European remote-sensing satellite (ERS) synthetic aperture radar interferograms with artificial interferograms constructed using output of a finite-element ice-shelf flow model to study the dynamics of Filchner-Ronne Ice Shelf (FRIS), Antaretica, near Hemmen Ice Rise (HIR) where the iceberg-calving front intersects Berkner Island. We find that the model must account for rifts, mechanically competent sea ice which fills rifts, and ice softening in coastal boundary layers in order to agree with the ice-deformation pattern implied by observed interferograms. Analysis of the stress field in the model experiment that best matches the observed interferograms suggests that: (1) HIR introduces weakness into the ice shelf through the generation of large-scale rifts, and (2) the melange of sea ice and ice-shelf fragments that fills the rifts stabilizes the shelf front by providing mechanical coupling between the fractured shelf front and the adjacent coast. The rift-filling melange could melt more easily than the surrounding ice shelf and thus could represent a vulnerability of the FRIS to climate warming.


2010 ◽  
Vol 29 (25-26) ◽  
pp. 3590-3597 ◽  
Author(s):  
F. Colleoni ◽  
G. Krinner ◽  
M. Jakobsson
Keyword(s):  

ARCTIC ◽  
1960 ◽  
Vol 13 (1) ◽  
Author(s):  
A.P. Crary
Keyword(s):  

2006 ◽  
Vol 52 (177) ◽  
pp. 223-234 ◽  
Author(s):  
Neil Glasser ◽  
Becky Goodsell ◽  
Luke Copland ◽  
Wendy Lawson

AbstractThis paper presents observations and measurements of debris characteristics and ice-shelf dynamics in the ablation region of the McMurdo Ice Shelf in the Ross Sea sector of Antarctica. Ice-shelf surface processes and dynamics are inferred from a combination of sedimentological descriptions, ground-penetrating radar investigations and through ablation, velocity and ice-thickness measurements. Field data show that in the study area the ice shelf moves relatively slowly (1.5–18.3ma–1), has high ablation rates (43–441 mm during 2003/04 summer) and is thin (6–22 m). The majority of debris on the ice shelf was originally transported into the area by a large and dynamic ice-sheet/ice-shelf system at the Last Glacial Maximum. This debris is concentrated on the ice-shelf surface and is continually redistributed by surface ablation (creating an ice-cored landscape of large debris-rich mounds), ice-shelf flow (forming medial moraines) and meltwater streams (locally reworking material and redistributing it across the ice-shelf surface). A conceptual model for supraglacial debris transport by contemporary Antarctic ice shelves is presented, which emphasizes these links between debris supply, surface ablation and ice-shelf motion. Low-velocity ice shelves such as the McMurdo Ice Shelf can maintain and sequester a debris load for thousands of years, providing a mechanism by which ice shelves can accumulate sufficient debris to contribute to sediment deposition in the oceans.


1987 ◽  
Vol 9 ◽  
pp. 145-150 ◽  
Author(s):  
Martin O. Jeffries ◽  
William M. Sackinger ◽  
Harold V. Serson

Periodically since 1950, air photographs and SLAR images have been taken of the Arctic ice shelves. The study of air photographs and SLAR images of the outer part of Milne Ice Shelf had three aims: (1) to map losses and ice re-growth at the shelf front, (2) to map the evolution of melt pools on shelf ice and multi-year land-fast sea ice, and (3) to assess the usefulness of air photographs and SLAR for these purposes. For mapping of ice calvings and subsequent sea-ice growth, both air photographs and radar images have been used sucessfully. However, air photographs are better than radar for mapping ice-surface features. The ridge-and-trough systems that characterize the surface of the ice shelf and old sea ice are clearly visible on each type of imagery but, because of their larger scale, air photographs proved to be most useful for a study of melt-pool evolution. The orientation of the melt pools is parallel to the prevailing winds which drive water along the troughs. The drainage system evolves by a process of elongation and coalesence.


2008 ◽  
Vol 10 (4) ◽  
pp. 950-966 ◽  
Author(s):  
Eric M. Bottos ◽  
Warwick F. Vincent ◽  
Charles W. Greer ◽  
Lyle G. Whyte

2003 ◽  
Vol 30 (20) ◽  
Author(s):  
Derek R. Mueller ◽  
Warwick F. Vincent ◽  
Martin O. Jeffries
Keyword(s):  
Break Up ◽  

1998 ◽  
Vol 44 (147) ◽  
pp. 405-418 ◽  
Author(s):  
Eric Rignot ◽  
Douglas R. MacAyeal

AbstractFifteen synthetic aperture radar (SAR) images of the Ronne Ice Shelf (also referred to as the Filchner-Ronne Ice Shelf), Antarctica, obtained by the European remote-sensing satellites ERS-1 and -2, are used to study ice-shelf dynamics near two ends of the iceberg-calving front. Interferograms constructed from these SAR images are used to resolve the ice-shelf displacement along several directions in response to both ocean tide and long-term creep flow. Tidal motion is separated from creep flow using differential interferometry, i.e. two or more interferograms in which fringe patterns common to all are predominantly associated with creep flow. Creep-flow velocities thus determined compare well with prior ice-shelf velocity surveys. Using these data, we studied the influence of large-scale rifts, ice rises and coastal separation on the ice-shelf flow. Many of the large rifts that appear to form the boundaries where tabular icebergs may eventually detach from the ice shelf are filled with a melange of sea ice, ice-shelf debris and wind-blown snow. The interferograms show that this melange tends to deform coherently in response to the ice-shelf flow and has sufficient strength to trap large tabular ice-shelf fragments for several decades before the fragments eventually become icebergs. In many instances, the motion of the tabular fragments is a rigid-body rotation about a vertical axis that is driven by velocity shear within the melange. Tfhe mechanical role of the rift-filling melange may be to bind tabular ice-shelf fragments to the main ice shelf before they calve. This suggests two possible mechanisms by which climate could influence tabular iceberg calving. First, spatial gradients in oceanic and atmospheric temperature may determine where the melange melts and, thus, the location of the iceberg-caking margin. Second, melting or weakening of ice melange as a consequence of climate change could trigger a sudden or widespread release of tabular icebergs and lead to rapid ice-shelf disintegration.


Nature ◽  
2016 ◽  
Vol 530 (7589) ◽  
pp. 163-164 ◽  
Author(s):  
Eugene Domack
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document