ice growth
Recently Published Documents


TOTAL DOCUMENTS

442
(FIVE YEARS 97)

H-INDEX

40
(FIVE YEARS 6)

2021 ◽  
pp. 1-20
Author(s):  
Vasiola Zhaka ◽  
Robert Bridges ◽  
Kaj Riska ◽  
Andrzej Cwirzen

Abstract Brash ice forms in harbours and ship channels from frequent ship passages and the resulting freezing–breaking cycles create a unique ice formation. The brash ice accumulation over the winter season is a result of meteorological, thermodynamical and mechanical processes. A reliable brash ice growth model is an important asset when determining navigation routes through ice conditions and when establishing port ice management solutions. This review aims to describe the brash ice development and its modelling as well as the key parameters that influence the brash ice growth and its estimation. This paper summarises the brash ice growth models and the fundamental theories of level ice growth upon which these models are based, and outlines the main knowledge gaps. The results highlight the importance of porosity and piece size distribution and their effect on the consolidation process. The inclusion of the brash ice lateral movement and the side ridge formation would improve the accuracy of forecast models. Furthermore, the findings of the study identify the effect of omitting meteorological parameters such as snow and radiation, from the brash ice growth models. Their contribution to the level ice thickness suggests a significant influence on the brash ice consolidation process.


2021 ◽  
Vol 267 ◽  
pp. 112730
Author(s):  
YoungHyun Koo ◽  
Ruibo Lei ◽  
Yubing Cheng ◽  
Bin Cheng ◽  
Hongjie Xie ◽  
...  
Keyword(s):  
Sea Ice ◽  

2021 ◽  
Author(s):  
Alex West ◽  
Ed Blockley ◽  
Mat Collins

Abstract. Arctic sea ice is declining rapidly, but predictions of its future loss are made difficult by the large spread both in present-day and in future sea ice area and volume; hence, there is a need to better understand the drivers of model spread in sea ice state. Here we present a framework for understanding differences between modelled sea ice simulations based on attributing seasonal ice growth and melt differences. In the method presented, the net downward surface flux is treated as the principal driver of seasonal sea ice growth and melt. A system of simple models is used to estimate the pointwise effect of model differences in key Arctic climate variables on this surface flux, and hence on seasonal sea ice growth and melt. We compare three models with very different historical sea ice simulations: HadGEM2-ES, HadGEM3-GC3.1 and UKESM1.0. The largest driver of differences in ice growth / melt between these models is shown to be the ice area in summer (representing the surface albedo feedback) and the ice thickness distribution in winter (the thickness-growth feedback). Differences in snow and melt-pond cover during the early summer exert a smaller effect on the seasonal growth and melt, hence representing the drivers of model differences in both this and in the sea ice volume. In particular, the direct impacts on sea ice growth / melt of differing model parameterisations of snow area and of melt-ponds are shown to be small but non-negligible.


2021 ◽  
Author(s):  
◽  
Katrin Sattler

<p>The lower boundary of alpine permafrost extent is considered to be especially sensitive to climate change. Ice loss within permanently frozen debris and bedrock as a consequence of rising temperature is expected to increase the magnitude and frequency of potentially hazardous mass wasting processes such as debris flows. Previous research in this field has been generally limited by an insufficient understanding of the controls on debris flow formation. A particular area of uncertainty is the role of environmental preconditioning factors in the spatial and temporal distribution of debris flow initiation in high-alpine areas. This thesis aims to contribute by investigating the influence of permafrost and intensive frost weathering on debris flow activity in the New Zealand Southern Alps. By analysing a range of potential factors, this study explores whether debris flow systems subjected to periglacial influence are more active than systems outside of the periglacial domain.   A comprehensive debris flow inventory was established for thirteen study areas in the Southern Alps. The inventory comprises 1534 debris flow systems and 404 regolith-supplying contribution areas. Analysis of historical aerial photographs, spanning six decades, identified 240 debris flow events. Frequency ratios and logistic regression models were used to explore the influence of preconditioning factors on the distribution of debris flows as well as their effect on sediment reaccumulation in supply-limited systems. The preconditioning factors considered included slope, aspect, altitude, lithology, Quaternary sediment presence, neo-tectonic uplift rates (as a proxy for bedrock fracturing), permafrost occurrence, and frost-weathering intensity. Topographic and geologic information was available in the form of published datasets or was derived from digital elevation models. The potential extent of contemporary permafrost in the Southern Alps was estimated based on the statistical evaluation of 280 rock glaciers in the Canterbury region. Statistical relationships between permafrost presence, mean annual air temperature, and potential incoming solar radiation were used to calculate the spatially distributed probability of permafrost occurrence. Spatially distributed frost-weathering intensities were estimated by calculating the number of annual freeze-thaw cycles as well as frost-cracking intensities, considering the competing frost-weathering hypotheses of volumetric ice expansion and segregation ice growth.  Results suggest that the periglacial influence on debris flow activity is present at high altitudes where intense frost weathering enhances regolith production. Frost-induced debris production appears to be more efficient in sun-avert than sun-facing locations, supporting segregation ice growth as the dominant bedrock-weathering mechanism in alpine environments. No indication was found that permafrost within sediment reservoirs increases slope instability. Similarly, the presence of permanently frozen bedrock within the debris flow contribution areas does not appear to increase regolith production rates and hence debris flow activity. Catchment topography and the availability of unconsolidated Quaternary deposits appeared to be the cardinal non-periglacial controls on debris flow distribution.   This thesis contributes towards a better understanding of the controls on debris flow formation by providing empirical evidence in support of the promoting effect of intense frost weathering on debris flow development. It further demonstrates the potential and limitations of debris flow inventories for identifying preconditioning debris flow controls. The informative value of regional-scale datasets was identified as a limitation in this research. Improvement in the spatial parameterisation of potential controls is needed in order to advance understanding of debris flow preconditioning factors.</p>


2021 ◽  
Author(s):  
◽  
Katrin Sattler

<p>The lower boundary of alpine permafrost extent is considered to be especially sensitive to climate change. Ice loss within permanently frozen debris and bedrock as a consequence of rising temperature is expected to increase the magnitude and frequency of potentially hazardous mass wasting processes such as debris flows. Previous research in this field has been generally limited by an insufficient understanding of the controls on debris flow formation. A particular area of uncertainty is the role of environmental preconditioning factors in the spatial and temporal distribution of debris flow initiation in high-alpine areas. This thesis aims to contribute by investigating the influence of permafrost and intensive frost weathering on debris flow activity in the New Zealand Southern Alps. By analysing a range of potential factors, this study explores whether debris flow systems subjected to periglacial influence are more active than systems outside of the periglacial domain.   A comprehensive debris flow inventory was established for thirteen study areas in the Southern Alps. The inventory comprises 1534 debris flow systems and 404 regolith-supplying contribution areas. Analysis of historical aerial photographs, spanning six decades, identified 240 debris flow events. Frequency ratios and logistic regression models were used to explore the influence of preconditioning factors on the distribution of debris flows as well as their effect on sediment reaccumulation in supply-limited systems. The preconditioning factors considered included slope, aspect, altitude, lithology, Quaternary sediment presence, neo-tectonic uplift rates (as a proxy for bedrock fracturing), permafrost occurrence, and frost-weathering intensity. Topographic and geologic information was available in the form of published datasets or was derived from digital elevation models. The potential extent of contemporary permafrost in the Southern Alps was estimated based on the statistical evaluation of 280 rock glaciers in the Canterbury region. Statistical relationships between permafrost presence, mean annual air temperature, and potential incoming solar radiation were used to calculate the spatially distributed probability of permafrost occurrence. Spatially distributed frost-weathering intensities were estimated by calculating the number of annual freeze-thaw cycles as well as frost-cracking intensities, considering the competing frost-weathering hypotheses of volumetric ice expansion and segregation ice growth.  Results suggest that the periglacial influence on debris flow activity is present at high altitudes where intense frost weathering enhances regolith production. Frost-induced debris production appears to be more efficient in sun-avert than sun-facing locations, supporting segregation ice growth as the dominant bedrock-weathering mechanism in alpine environments. No indication was found that permafrost within sediment reservoirs increases slope instability. Similarly, the presence of permanently frozen bedrock within the debris flow contribution areas does not appear to increase regolith production rates and hence debris flow activity. Catchment topography and the availability of unconsolidated Quaternary deposits appeared to be the cardinal non-periglacial controls on debris flow distribution.   This thesis contributes towards a better understanding of the controls on debris flow formation by providing empirical evidence in support of the promoting effect of intense frost weathering on debris flow development. It further demonstrates the potential and limitations of debris flow inventories for identifying preconditioning debris flow controls. The informative value of regional-scale datasets was identified as a limitation in this research. Improvement in the spatial parameterisation of potential controls is needed in order to advance understanding of debris flow preconditioning factors.</p>


2021 ◽  
Author(s):  
◽  
Jonathan Crook

<p>First-year land-fast sea ice growth in both the Arctic and the Antarctic is characterised by the formation of an initial ice cover, followed by the direct freezing of seawater at the ice-water interface. Such growth usually results, through geometric selection, in congelation ice. This is, in general, the typical crystal structure observed in first-year ice growth in the Arctic. However, in certain regions of the Antarctic, platelet crystals are observed to contribute significantly to the ice growth, beyond a depth of 1 m. This thesis will investigate a number of ideas as to why the platelet crystals only appear in the ice after a significant amount of congelation growth has occurred. One of the key premises will be that platelet ice forms when smaller frazil crystals, beneath the ice, rise up and attach to the interface. They are then incorporated into the ice cover and become the platelets seen in ice cores.  The Shields criterion is used to find the strength of turbulence, associated with tidal flow, required to keep a frazil crystal from adhering to the interface. It is shown that the sub-ice flow is sufficient to keep most crystals in motion. However, this turbulence may weaken or dissipate completely as the tide turns. The velocity associated with brine rejection is suggested as an alternative to keep the crystals in suspension during these periods of low shear turbulence. Brine rejection occurs as the sea ice grows, rejecting salt into the seawater below. By comparing this velocity with a model for the frazil rise velocity it is shown that brine rejection has sufficient strength to keep crystals in suspension. This effect weakens as the ice gets thicker, allowing larger frazil crystals to rise to the interface. The early work in this thesis shows that a flow can keep a single crystal from adhering to the interface. This can be regarded as the competence of a flow to keep a crystal in suspension. However, of equal importance is the capacity of a flow to keep a mass of crystals in suspension. It is shown that, given a sufficiently large mass of crystals beneath the ice, the same flow that can hold a single crystal in suspension will not be able to keep all the crystals in motion. The deposition of crystals is predicted to occur in a gradual manner if there is a steady build-up of crystals beneath the ice. The largest crystals, close to the interface, will settle against the ice as the flow is unable to support the entire mass of crystals Also considered is whether frazil crystals may be similar to cohesive sediments. If this is the case, a sudden influx of crystals from outside of the system may lead to the formation of a layer of unattached crystals beside the ice-water interface. This can cause a critical collapse of the turbulent field, resulting in the settling of a large quantity of frazil crystals. Though the emphasis of much of this thesis is on the effect of the flow on the crystals, it is also found that a mass of crystals can have a stabilising effect on the flow. The change in the density profile induced by an increase in the frazil concentration towards the ice-water interface (and hence a decrease in the density of the ice-water mixture) damps the turbulence produced by shear. The mass and size of crystals in suspension play major roles in the strength of stabilisation.  Measurements of turbulence and the suspension of frazil crystals beneath sea ice are difficult to make. This thesis aims to present and analyse a number of models which may explain the platelet puzzle - the delayed appearance of the platelet crystals in ice cores. These are compared with the observations which are available, and conclusions made on the validity of the theories presented.</p>


2021 ◽  
Author(s):  
◽  
Jonathan Crook

<p>First-year land-fast sea ice growth in both the Arctic and the Antarctic is characterised by the formation of an initial ice cover, followed by the direct freezing of seawater at the ice-water interface. Such growth usually results, through geometric selection, in congelation ice. This is, in general, the typical crystal structure observed in first-year ice growth in the Arctic. However, in certain regions of the Antarctic, platelet crystals are observed to contribute significantly to the ice growth, beyond a depth of 1 m. This thesis will investigate a number of ideas as to why the platelet crystals only appear in the ice after a significant amount of congelation growth has occurred. One of the key premises will be that platelet ice forms when smaller frazil crystals, beneath the ice, rise up and attach to the interface. They are then incorporated into the ice cover and become the platelets seen in ice cores.  The Shields criterion is used to find the strength of turbulence, associated with tidal flow, required to keep a frazil crystal from adhering to the interface. It is shown that the sub-ice flow is sufficient to keep most crystals in motion. However, this turbulence may weaken or dissipate completely as the tide turns. The velocity associated with brine rejection is suggested as an alternative to keep the crystals in suspension during these periods of low shear turbulence. Brine rejection occurs as the sea ice grows, rejecting salt into the seawater below. By comparing this velocity with a model for the frazil rise velocity it is shown that brine rejection has sufficient strength to keep crystals in suspension. This effect weakens as the ice gets thicker, allowing larger frazil crystals to rise to the interface. The early work in this thesis shows that a flow can keep a single crystal from adhering to the interface. This can be regarded as the competence of a flow to keep a crystal in suspension. However, of equal importance is the capacity of a flow to keep a mass of crystals in suspension. It is shown that, given a sufficiently large mass of crystals beneath the ice, the same flow that can hold a single crystal in suspension will not be able to keep all the crystals in motion. The deposition of crystals is predicted to occur in a gradual manner if there is a steady build-up of crystals beneath the ice. The largest crystals, close to the interface, will settle against the ice as the flow is unable to support the entire mass of crystals Also considered is whether frazil crystals may be similar to cohesive sediments. If this is the case, a sudden influx of crystals from outside of the system may lead to the formation of a layer of unattached crystals beside the ice-water interface. This can cause a critical collapse of the turbulent field, resulting in the settling of a large quantity of frazil crystals. Though the emphasis of much of this thesis is on the effect of the flow on the crystals, it is also found that a mass of crystals can have a stabilising effect on the flow. The change in the density profile induced by an increase in the frazil concentration towards the ice-water interface (and hence a decrease in the density of the ice-water mixture) damps the turbulence produced by shear. The mass and size of crystals in suspension play major roles in the strength of stabilisation.  Measurements of turbulence and the suspension of frazil crystals beneath sea ice are difficult to make. This thesis aims to present and analyse a number of models which may explain the platelet puzzle - the delayed appearance of the platelet crystals in ice cores. These are compared with the observations which are available, and conclusions made on the validity of the theories presented.</p>


2021 ◽  
Author(s):  
James Anheuser ◽  
Yinghui Liu ◽  
Jeffrey Key

Abstract. As changes to Earth’s polar climate accelerate, the need for robust, long–term sea ice thickness observation datasets for monitoring those changes and for verification of global climate models is clear. By coupling a recently developed algorithm for retrieving snow–ice interface temperature from passive microwave satellite data to a thermodynamic sea ice energy balance relation known as Stefan's Law, we have developed a new retrieval method for estimating thermodynamic sea ice thickness growth from space: Stefan’s Law Integrated Conducted Energy (SLICE). The advantages of the SLICE retrieval method include daily basin-wide coverage and a potential for use beginning in 1987. The method requires an initial condition at the beginning of the sea ice growth season in order to produce absolute sea ice thickness and cannot as yet capture dynamic sea ice thickness changes. Validation of the method against ten ice mass balance buoys using the ice mass balance buoy thickness as the initial condition show a mean correlation of 0.991 and a mean bias of 0.008 m over the course of an entire sea ice growth season. Estimated Arctic basin-wide sea ice thickness from SLICE for the sea ice growth seasons beginning between 2012 through 2019 capture a mean of 12.0 % less volumetric growth than a CryoSat-2 and Soil Moisture and Ocean Salinity (SMOS) merged sea ice thickness product (CS2SMOS) and a mean of 8.3 % more volumetric growth than the Pan-Arctic Ice–Ocean Modeling and Assimilation System (PIOMAS). The spatial distribution of the sea ice thickness differences between the retrieval results and those reference datasets show patterns consistent with expected sea ice thickness changes due to dynamic effects. This new retrieval method is a viable basis for a long–term sea ice thickness climatology, especially if dynamic effects can be captured through inclusion of an ice motion dataset.


Sign in / Sign up

Export Citation Format

Share Document