scholarly journals Emerging Biosecurity Threats and Responses: A Review of Published and Gray Literature

2021 ◽  
pp. 13-36
Author(s):  
Christopher L. Cummings ◽  
Kaitlin M. Volk ◽  
Anna A. Ulanova ◽  
Do Thuy Uyen Ha Lam ◽  
Pei Rou Ng

AbstractThe field of biotechnology has been rigorously researched and applied to many facets of everyday life. Biotechnology is defined as the process of modifying an organism or a biological system for an intended purpose. Biotechnology applications range from agricultural crop selection to pharmaceutical and genetic processes (Bauer and Gaskell 2002). The definition, however, is evolving with recent scientific advancements. Until World War II, biotechnology was primarily siloed in agricultural biology and chemical engineering. The results of this era included disease-resistant crops, pesticides, and other pest-controlling tools (Verma et al. 2011). After WWII, biotechnology began to shift domains when advanced research on human genetics and DNA started. In 1984, the Human Genome Project (HGP) was formerly proposed, which initiated the pursuit to decode the human genome by the private and academic sectors. The legacy of the project gave rise to ancillary advancements in data sharing and open-source software, and solidified the prominence of “big science;” solidifying capital-intensive large-scale private-public research initiatives that were once primarily under the purview of government-funded programs (Hood and Rowen 2013). After the HGP, the biotechnology industry boomed as a result of dramatic cost reduction to DNA sequencing processes. In 2019 the industry was globally estimated to be worth $449.06 billion and is projected to increase in value (Polaris 2020).

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1968 ◽  
Author(s):  
Roderic Guigo ◽  
Michiel de Hoon

At the beginning of this century, the Human Genome Project produced the first drafts of the human genome sequence. Following this, large-scale functional genomics studies were initiated to understand the molecular basis underlying the translation of the instructions encoded in the genome into the biological traits of organisms. Instrumental in the ensuing revolution in functional genomics were the rapid advances in massively parallel sequencing technologies as well as the development of a wide diversity of protocols that make use of these technologies to understand cellular behavior at the molecular level. Here, we review recent advances in functional genomic methods, discuss some of their current capabilities and limitations, and briefly sketch future directions within the field.


1996 ◽  
Vol 13 (2) ◽  
pp. 18-46 ◽  
Author(s):  
Allen Buchanan

The Nobel prize-winning molecular biologist Walter Gilbert described the mapping and sequencing of the human genome as “the grail of molecular biology.” The implication, endorsed by enthusiasts for the new genetics, is that possessing a comprehensive knowledge of human genetics, like possessing the Holy Grail, will give us miraculous powers to heal the sick, and to reduce human suffering and disabilities. Indeed, the rhetoric invoked to garner public support for the Human Genome Project appears to appeal to the best of the Western tradition's enthusiasm for progress: the idea of improving human lives through the practical application of scientific knowledge.


Author(s):  
Debra J. H. Mathews

Public health genetics (more commonly referred to as “community genetics” in Europe) has been practiced to some degree in the West since at least the 1960s, but the development of a cohesive field took time and advances in technology. The application of genetics and genomics to prevent disease and promote public health became firmly established as a field in the late 1990s, as large-scale sequencing of the human genome as part of the Human Genome Project began. The field is now thriving, leading to both tremendous public health benefits and risks for both individuals and populations. This chapter provides an overview of the section of The Oxford Handbook of Public Health Ethics dedicated to public health genetics. The chapters roughly trace the evolution of public health genetics from its roots in eugenics, to the present challenges faced in newborn screening and biobanking, and finally to emerging questions raised by the application of genomics to infectious disease.


1996 ◽  
Vol 13 (2) ◽  
pp. 63-95 ◽  
Author(s):  
Eric T. Juengst

On October 1, 1988, thirty-five years after co-discovering the structure of the DNA molecule, Dr. James Watson launched an unprecedented experiment in American science policy. In response to a reporter's question at a press conference, he unilaterally set aside 3 to 5 percent of the budget of the newly launched Human Genome Project to support studies of the ethical, legal, and social implications of new advances in human genetics. The Human Genome Project (HGP), by providing geneticists with the molecular maps of the human chromosomes that they use to identify specific human genes, will speed the proliferation of a class of DNA-based diagnostic and risk-assessment tests that already create professional ethical and health-policy challenges for clinicians. “The problems are with us now, independent of the genome program, but they will be associated with it,” Watson said. “We should devote real money to discussing these issues.” By 1994, the “ELSI program” (short for “Ethical, Legal, and Social Implications”) had spent almost $20 million in pursuit of its mission, and gained both praise and criticism for its accomplishments.


Author(s):  
Wolfgang Wurst ◽  
Achim Gossler

Gene trap (GT) strategies in mouse embryonic stem (ES) cells are increasingly being used for detecting patterns of gene expression (1-4, isolating and mutating endogenous genes (5-7), and identifying targets of signalling molecules and transcription factors (3, 8-10). The general term gene trap refers to the random integration of a reporter gene construct (called entrapment vector) (11, 12) into the genome such that ‘productive’ integration events bring the reporter gene under the transcriptional regulation of an endogenous gene. In some cases this also simultaneously generates an insertional mutation. Entrapment vectors were originally developed in bacteria (13), and applied in Drosophila to identify novel developmental genes and/or regulatory sequences (14-17). Subsequently, a modified strategy was developed for mouse in which the reporter gene mRNA becomes fused to an endogenous transcript. Such ‘gene trap’ vectors were initially used primarily as a tool to discover genes involved in development (1, 2,18). In the last five years there has been a significant shift of GT approaches in mouse to much broader, large scale applications in the context of the analysis of mammalian genomes and ‘functional genomics’. Sequencing and physical mapping of both the human and mouse genomes is expected to be completed within the next five years. Already, a large number of mouse and human genes have been identified as expressed sequence tags (ESTs), and very likely the majority of genes will be discovered as ESTs shortly. This vast sequence information contrasts with a rather limited understanding of the in vivo functions of these genes. Whereas DNA sequence can provide some indication of the potential functions of these genes and their products, their physiological roles in the organism have to be determined by mutational analysis. Thus, the sequencing effort of the human genome project has to be complemented by efficient functional analyses of the identified genes. One potentially powerful complementation to the efforts of the human genome project would be a strategy whereby large scale random mutagenesis in mouse is combined with the rapid identification of the mutated genes (6,7,19, and German gene trap consortium, W. W. unpublished data).


2016 ◽  
Vol 23 (1) ◽  
pp. 21
Author(s):  
Kremema Star ◽  
Barbara Birshtein

The human genome project created the field of genomics – understanding genetic material on a large scale. Scientists are deciphering the information held within the sequence of our genome. By building upon this knowledge, physicians and scientists will create fundamental new technologies to understand the contribution of genetics to diagnosis, prognosis, monitoring, and treatment of human disease. The science of genomic medicine has only begun to affect our understanding of health.


Sign in / Sign up

Export Citation Format

Share Document