Eddy Current Thermography Testing on Lack of Fusion (LOF) Defect of Carbon Steel Welded Sample

Author(s):  
Nurliyana Shamimie Rusli ◽  
Syamsyir Akmal Senawi ◽  
Sidek Abdul Aziz ◽  
Ilham Mukriz Zainal Abidin ◽  
Azhan Hashim ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5515
Author(s):  
Linnan Huang ◽  
Chunhui Liao ◽  
Xiaochun Song ◽  
Tao Chen ◽  
Xu Zhang ◽  
...  

The uneven surface of the weld seam makes eddy current testing more susceptible to the lift-off effect of the probe. Therefore, the defect of carbon steel plate welds has always been a difficult problem in eddy current testing. This study aimed to design a new type of eddy current orthogonal axial probe and establish the finite element simulation model of the probe. The effect of the probe structure, coil turns, and coil size on the detection sensitivity was simulated. Further, a designed orthogonal axial probe was used to conduct a systematic experiment on the weld of carbon steel specimens, and the 0.2 mm width and 1 mm depth of weld defects of carbon steel plates were effectively detected. The experimental results showed that the new orthogonal axial eddy current probe effectively suppressed the unevenness effect of the weld surface on the lift-off effect during the detection process.


2008 ◽  
Vol 200 (1-3) ◽  
pp. 316-318 ◽  
Author(s):  
S.H. Khan ◽  
Farhad Ali ◽  
A. Nusair Khan ◽  
M.A. Iqbal

Author(s):  
Shanshan Sun ◽  
Deqianga Zhou ◽  
Noritaka Yusa ◽  
Haicheng Song

This paper proposes to evaluate the local wall thinning of carbon steel pipe using an eddy current method. Firstly, the feature signals are determined by correlation analysis of the signals and the wall thinning sizes. Subsequently, the models for estimating the residual wall thickness rt is constructed using Gaussian process regression (GPR). Finally, the applicability of the models to the evaluation of local wall thinning is verified by simulation and experiment.


Author(s):  
Stefanie L. Asher ◽  
Andreas Boenisch ◽  
Konrad Reber

Pipeline in-line inspections (ILI) are one of the primary methods used to assess the integrity of operating oil and gas pipelines. Conventional ILI technology is based on ultrasonic testing (UT) or magnetic flux leakage (MFL) sensors. Although these technologies are suitable for most pipeline inspections, there remains an opportunity to expand ILI technology and application. ExxonMobil and Innospection Ltd. are working to develop a new ILI sensor technology based on a combination of Magnetic Eddy Current (MEC) and multi-differential eddy current. This new technology provides the potential to detect small volumetric features, inspect heavy wall gas pipelines, and inspect pipelines with corrosion resistant alloy (CRA) or non-metallic liners. Initial feasibility trials were conducted with a prototype ILI MEC tool. Tests were conducted on an 8.625” (219 mm) X65 carbon steel pipe lined with 0.118” (3 mm) of Inconel 825 pipe. Four types of defects were machined into the pipe to represent natural defects anticipated in service: • Metal loss features from 3 to 24 mm in diameter on the external surface of the carbon steel base pipe • Erosion on the internal layer of the CRA liner • Internal girth weld crack-like defects • Metal loss defects at the interface of the CRA and carbon steel Over 80 pull tests were conducted to determine the detection capabilities and speed sensitivities of the tool. Defects were detected by the sensors including the very small (<10 mm) pinhole-type features. Signals were analyzed by a preliminary sizing algorithm to demonstrate proof of concept. Detection performance was not affected at speeds up to 0.75 m/s. Since detection capabilities exceeded expectations, future development will continue based on the current prototype.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1347-1355
Author(s):  
Tao Chen ◽  
Xiaoqi Xiao ◽  
Lihong Zhang ◽  
Cheng Lv ◽  
Zhiyang Deng ◽  
...  

Due to uneven surface and lift-off effect, it is difficult to detect weld crack by eddy-current testing. A new orthogonal eddy-current probe for weld crack detection of carbon-steel plate was designed in this paper. Based on COMSOL Multiphysics, the influence of scanning angle on detection sensitivity of the probe was compared firstly. Then, the effects of coil width, coil side length, detection coil height, and lift-off distance on detection sensitivity of the probe were studied, respectively. Finally, the test piece of carbon-steel plate weld with crack, and the physical probe used to verify the crack detection effect were made. The experimental results show that the weld crack of carbon-steel plate with length × width × depth of 20.0 mm × 0.3 mm × 1 mm can be effectively identified, and the lift-off noise can be effectively suppressed by the method presented in this paper. At the same time, the signal-to-noise ratio of the probe keeps constant in the lift-off distance range of 0.3 mm–3.0 mm.


2016 ◽  
Vol 21 (1) ◽  
pp. 57-60 ◽  
Author(s):  
Duck-Gun Park ◽  
M.B. Kishore ◽  
J.Y. Kim ◽  
L.J. Jacobs ◽  
D.H. Lee

Sign in / Sign up

Export Citation Format

Share Document