Evaluation of Bioreactor Landfill as Sustainable Land Disposal Method

Author(s):  
P. Lakshmikanthan ◽  
L. G. Santhosh ◽  
G. L. Sivakumar Babu
1987 ◽  
Vol 19 (8) ◽  
pp. 99-105 ◽  
Author(s):  
G. Tesan ◽  
D. Barbosa

The work presented consists of a test procedure applied at a pilot scale using soil as a biological degradation agent. The experiments described were carried out with oily residues considered as wastes difficult to degrade by other means. The tests were applied to filter cake with activated clay containing 40% oil and oily residues from re-refining of lubricants to give white oils and vaseline. The effect of the amount of moisture is evaluated using a mechanical stirrer to improve the interaction between the wastes and microorganisms. The following are also evaluated: nutrient availability; incorporation of micro-organisms into the soil; introduction of chemical fertilizers; and, injections of sludge from effluent treatment plants.


1996 ◽  
Vol 33 (8) ◽  
pp. 71-77
Author(s):  
I. M.-C. Lo ◽  
H. M. Liljestrand ◽  
J. Khim ◽  
Y. Shimizu

Simple land disposal systems for hazardous and mixed wastes contain heavy metal cationic species through precipitation and ion exchange mechanisms but typically fail by releasing soluble organic and inorganic anionic species. To enhance the removal of anions from leachate, clays are modified with coatings of iron or aluminium cations to bridge between the anionic surface and the anionic pollutants. A competitive surface ligand exchange model indicates that surface coatings of 10 meq cation/gm montmorillonite under typical leachate conditions increase the inorganic anion sorption capacity by at least a factor of 6 and increase the intrinsic surface exchange constants by more than a factor of 100. Similarly, metal hydroxide coatings on montmorillonite increase the organic anion sorption capacity by a factor of 9 and increase the intrinsic surface exchange constants by a factor of 20. For historical concentrations of non-metal anions in US hazardous and mixed waste leachate, sorption onto natural clay liner materials is dominated by arsenate sorption. With cation coatings, anion exchange provides an effective removal for arsenate, selenate, phenols, cresols, and phthalates. Engineering applications are presented for the use of modified clays as in situ barriers to leachate transport of anionic pollutants as well as for above ground treatment of recovered leachate.


2021 ◽  
Vol 23 (6) ◽  
pp. 2192-2207
Author(s):  
Anil Nain ◽  
Rajesh Kumar Lohchab ◽  
Kulbir Singh ◽  
Mikhlesh Kumari ◽  
Jitender Kumar Saini

2021 ◽  
Vol 47 (3) ◽  
pp. 465-481
Author(s):  
Arif Mohammad ◽  
Venkata Siva Naga Sai Goli ◽  
Agnes Anto Chembukavu ◽  
Devendra Narain Singh

Biochemical decomposition of municipal solid waste (MSW) in landfills leads to the generation of leachate, gases and humus substances. In this context, a methodology to assess D ecomposition of MSW, designated as DecoMSW, has been developed; based on a series of tests conducted on samples of the fresh MSW and those retrieved from the active bioreactor landfill (BLF) cells of age from 13 to 48 months. Furthermore, spatial and temporal variation in the (i) physical (composition) and (ii) chemical (pH, volatile solids, total organic carbon, elemental analysis, ammonium and nitrate-nitrogen, biomethanation potential, lignocellulosic content) characteristics of the MSW samples exhumed from the landfill have been established. Finally, these characteristics were correlated vis-à-vis the respective values of the fresh MSW. From this exercise, it has been observed that except for nitrate-nitrogen, all other chemical parameters of MSW decrease exponentially with time until 20 months, and beyond that, they remain constant, which is an indication of stabilization of MSW. In short, it has been demonstrated that DecoMSW is instrumental in assessing the state of decomposition of MSW with respect to time in the BLF and facilitates initiation of the landfill mining activities.


Pollution ◽  
1973 ◽  
pp. 346-356
Author(s):  
J. J. Kolega ◽  
A. W. Dewey ◽  
R. L. Leonard ◽  
B. J. Cosenza
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document