Slope Deformation Characteristics and Formation Mechanism

2016 ◽  
pp. 143-162
Author(s):  
Yang Changwei ◽  
Zhang Jingyu ◽  
Lian Jing ◽  
Yu Wenying ◽  
Zhang Jianjing
2021 ◽  
Author(s):  
Liangfu Xie ◽  
jianbin cui ◽  
Yongjun Qin ◽  
Liewang Qiu

Abstract In order to study the deformation characteristics of reverse slope, this paper took the slope of Xiaodongcao as the research object, applied the Louvain community detection algorithm, considered the influence of reservoir water level change, partitioned the slope deformation characteristics. The deformation characteristic zoning result was superimposed with the slope displacement cloud map and three types of geological geometric characteristic factor zoning map obtained by ArcGIS. The results show that:Community detection can quickly identify the closely connected part of slope network, and the specific location of this part is affected by reservoir water. After the community detection result is superimposed with the displacement cloud map, the areas with large deformation and close connection in the slope can be identified. It is found that the community with severe deformation have at least 5% more displacement and up to 21% more displacement than that with slow deformation. In addition, the location of leader nodes can be identified, and the number of leader nodes does not exceed 20% of the total nodes in the community, and its average displacement is at least 10% more than that of ordinary nodes, up to 36%. After the community detection result is superimposed with the zoning map of slope grade, it can be concluded that the slope grade within the community with severe deformation is greater than 60°, indicating that the larger slope grade is more sensitive to the bank slope deformation.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1960
Author(s):  
Shilin Luo ◽  
Xiaoguang Jin ◽  
Da Huang ◽  
Xibin Kuang ◽  
Yixiang Song ◽  
...  

In this study, an investigation on the formation mechanisms, deformation characteristics, and stability of the Outang landslide, composed by three independent blocks (O1, O2, and O3), is performed by integrating site surveys, multi-technique monitoring data, and numerical simulation. The results show that the formation mechanism for blocks O1 and O3 is slide-bulking, and is planar slide for block O2. These three blocks slide along the incompetent layers (ILs): IL1 is the slip surface of block O1 and O2, and IL3 is the slip surface of block O3. Furthermore, the west local fast movement zone might evolve into deep failure. The slope surface movement is step-like, characterized by the alternation of rapid displacement followed by imperceptible displacement over each hydrological year. The surface displacement velocities increased upslope. Based on the numerical simulation, both precipitation and reservoir water are believed as the major factors driving the slope behaviors, and the slope stability would be decreased gradually under the effect of the periodic variation of water level and seasonal precipitation infiltration. As a result of this study, some countermeasures of landslide and long-term monitoring are recommended.


Author(s):  
J. E. O’Neal ◽  
K. K. Sankaran ◽  
S. M. L. Sastry

Rapid solidification of a molten, multicomponent alloy against a metallic substrate promotes greater microstructural homogeneity and greater solid solubility of alloying elements than can be achieved by slower-cooling casting methods. The supersaturated solid solutions produced by rapid solidification can be subsequently annealed to precipitate, by controlled phase decomposition, uniform 10-100 nm precipitates or dispersoids. TEM studies were made of the precipitation of metastable Al3Li(δ’) and equilibrium AL3H phases and the deformation characteristics of a rapidly solidified Al-3Li-0.2Ti alloy.


Sign in / Sign up

Export Citation Format

Share Document