Design of Noise Information Storage System Using IoT Devices

Author(s):  
Judae Lee ◽  
Unil Yun
Author(s):  
Reymon M Santiañez ◽  
Benedict M Sollano

The goal of this study was to create the Local Area Network Based Archiving System, a cross-platform development system for electronic information storage, security, preservation, and retention. The system incorporates capabilities such as data storage for long-term preservation and retrieval, file searching and retrieval, security features such as user account information system and account access privilege levels, and an email-like messaging system. The researchers developed the Local Area Network Based Archiving System using the Agile Software Development Methodology to keep up with the stakeholders' ever-changing needs. After each iteration of the work cycle, this methodology employs a process of frequent feedback. Features are added or refined in each iteration to ensure that the study meets its goals and expectations. The developed system received an overall average weighted mean of 4.53 in the evaluation summary, which is considered excellent. The strongest point of the system, according to the respondents' responses, was its content, which received the highest average mean among the five major categories in the system evaluation. The system's mobile responsiveness was a huge plus, as it considerably aided accessibility. The system should also be deployed, according to the respondents, because it will provide a powerful answer to the ongoing challenges with storing, managing, securing, and retrieving electronic files. As a result, the researchers concluded that a Local Area Network Based Archiving System is required for the efficient operation of an electronic  file storage system. Having centralized electronic file storage and retrieval system not only saves time and money in the long run but also allows for disaster recovery and business continuity.


2014 ◽  
Vol 668-669 ◽  
pp. 1257-1262
Author(s):  
Jun Zuo ◽  
Zhen Zhu ◽  
Jing Yan Wang

In order to meet growing demand of storage resources, improve the security and integrity of enterprise information resources, this paper analyzes storage resources status and existing problems of Foshan XY Elec-Mech Limited Corp in the first. Based on detailed analysis of cloud storage hierarchy and its advantages, the cloud storage framework is designed to meet enterprise’s demands, security control strategies and backup strategies are also discussed. After implementation, the integration of information resources in multi-systems and multi-platforms may realized for providing users with massive information storage and access services. Furthermore, when disaster coming, multiple backups may be used to recovery for ensuring the continuity of enterprise’s business processing.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2159 ◽  
Author(s):  
Sung Hoon Baek ◽  
Ki-Woong Park

Flash-based storage is considered to be a de facto storage module for sustainable Internet of things (IoT) platforms under a harsh environment due to its relatively fast speed and operational stability compared to disk storage. Although their performance is considerably faster than disk-based mechanical storage devices, the read and write latency still could not catch up with that of Random-access memory (RAM). Therefore, RAM could be used as storage devices or systems for time-critical IoT applications. Despite such advantages of RAM, a RAM-based storage system has limitations in its use for sustainable IoT devices due to its nature of volatile storage. As a remedy to this problem, this paper presents a durable hybrid RAM disk enhanced with a new read interface. The proposed durable hybrid RAM disk is designed for sustainable IoT devices that require not only high read/write performance but also data durability. It includes two performance improvement schemes: rapid resilience with a fast initialization and direct byte read (DBR). The rapid resilience with a fast initialization shortens the long booting time required to initialize the durable hybrid RAM disk. The new read interface, DBR, enables the durable hybrid RAM disk to bypass the disk cache, which is an overhead in RAM-based storages. DBR performs byte–range I/O, whereas direct I/O requires block-range I/O; therefore, it provides a more efficient interface than direct I/O. The presented schemes and device were implemented in the Linux kernel. Experimental evaluations were performed using various benchmarks at the block level till the file level. In workloads where reads and writes were mixed, the durable hybrid RAM disk showed 15 times better performance than that of Solid-state drive (SSD) itself.


Author(s):  
Jang Hyun Kim ◽  
Wooyoung Jeong ◽  
Hyunseok Yang

Today many media of information storage device are formed as disks. Hence, next generation removable data storage media are shaped as disk types too. The holographic data storage system also uses a disk type photopolymer media. And then, holographic data storage system is most advanced optical memory system. Tracking servo and tilt servo control are very important research in holographic data storage system. In this paper, we propose intelligent servo control by fuzzy rules in holographic data storage system. Hence, we have found pattern of tilt servo control in holographic data storage system through fuzzy system. Fuzzy rules were generated by Genetic algorithm for controlling tilt servo. Therefore, we control tilt servo using fuzzy rules in holographic data storage system. Consequently, practical pattern of tilt servo control was found by intelligence algorithm in holographic data storage system.[1]


ChemInform ◽  
1990 ◽  
Vol 21 (29) ◽  
Author(s):  
R. D. RIEKE ◽  
G. O. PAGE ◽  
P. M. HUDNALL ◽  
R. W. ARHART ◽  
T. W. BOULDIN

2020 ◽  
Vol 17 (9) ◽  
pp. 3979-3982
Author(s):  
N. Harish Kumar ◽  
G. Deepak

Internet of Things has been increasing its usage and recognition in vast sectors like Defence, Business, Industries, and Hospitals. The data disruption is strictly unacceptable in a number of these sectors because it could end up in serious Loss or Damages to the entire system. As of now, IOT is using a central cloud storage system for information storage and transactions. However, some examples already verified that Central cloud storage information might be hacked and changed by the specialists. This paper presents an IoT system having localized block chain storage which works on real time data and manipulates with narrowness of data interruption and modification and its recovery.


Sign in / Sign up

Export Citation Format

Share Document