On the Security of Chaos-Based Watermarking Scheme for Secure Communication

Author(s):  
Musheer Ahmad ◽  
Hamed D. AlSharari
2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Amir Anees ◽  
Iqtadar Hussain ◽  
Abdulmohsen Algarni ◽  
Muhammad Aslam

The protection of copyrights of digital media uploaded to the Internet is a growing problem. In this paper, first, we present a unified framework for embedding and detecting watermark in digital data. Second, a new robust watermarking scheme is proposed considering this concern. The proposed work incorporates three chaotic maps which specify the location for embedding the watermark. Third, a new chaotic map, the Extended Logistic map, is proposed in this work. The proposed map has a bigger range than logistic and cubic maps. It has shown good results in a bifurcation, sensitivity to initial conditions, and randomness tests. Furthermore, with the detailed analysis of initial parameters, it is justified that Extended Logistic map can be used in secure communication, particularly watermarking. Fourth, to check the robustness of proposed watermarking scheme, we have done a series of analyses and standard attacks. The results confirm that the proposed watermarking scheme is robust against visual and statistical analysis and can resist the standard attacks.


2022 ◽  
Vol 16 (1) ◽  
pp. 0-0

One of the important issues in telemedicine field refers to an advanced secure communication. Digital image watermarking is an ideal solution since it protects the electronic patient information’s from unauthorized access. This paper presents a novel blind fragile-based image watermarking scheme in spatial domain that merges Speed Up Robust Features (SURF) descriptor with the well-known Weber Descriptors (WDs) and Arnold algorithm. It provides a good way for enhancing the image quality and time complexity for medical data integrity. Firstly, the watermark image is shuffled using Arnold chaotic map. Secondly, the SURF technique is practiced to Region of Interest (ROI) of the medical image and then the blocks around the SURF points are selected to insert the watermark. Finally, the watermark is encrusted and extracted using WDs. Experimental results show good image fidelity with the shortest execution time to ensure medical images integrity.


2012 ◽  
Vol 132 (6) ◽  
pp. 932-939
Author(s):  
Kohei Sayama ◽  
Masayoshi Nakamoto ◽  
Mitsuji Muneyasu ◽  
Shuichi Ohno

Author(s):  
Minoru KURIBAYASHI ◽  
Shogo SHIGEMOTO ◽  
Nobuo FUNABIKI

Author(s):  
S. Thabasu Kannan ◽  
S. Azhagu Senthil

Now-a-days watermarking plays a pivotal role in most of the industries for providing security to their own as well as hired or leased data. This paper its main aim is to study the multiresolution watermarking algorithms and also choosing the effective and efficient one for improving the resistance in data compression. Computational savings from such a multiresolution watermarking framework is obvious. The multiresolutional property makes our watermarking scheme robust to image/video down sampling operation by a power of two in either space or time. There is no common framework for multiresolutional digital watermarking of both images and video. A multiresolution watermarking based on the wavelet transformation is selected in each frequency band of the Discrete Wavelet Transform (DWT) domain and therefore it can resist the destruction of image processing.   The rapid development of Internet introduces a new set of challenging problems regarding security. One of the most significant problems is to prevent unauthorized copying of digital production from distribution. Digital watermarking has provided a powerful way to claim intellectual protection. We proposed an idea for enhancing the robustness of extracted watermarks. Watermark can be treated as a transmitted signal, while the destruction from attackers is regarded as a noisy distortion in channel.  For the implementation, we have used minimum nine coordinate positions. The watermarking algorithms to be taken for this study are Corvi algorithm and Wang algorithm. In all graph, we have plotted X axis as peak signal to noise ratio (PSNR) and y axis as Correlation with original watermark. The threshold value ά is set to 5. The result is smaller than the threshold value then it is feasible, otherwise it is not.


Author(s):  
Amolkirat Singh ◽  
Guneet Saini

Many people lose their life and/or are injured due to accidents or unexpected events taking place on road networks. Besides traffic jams, these accidents generate a tremendous waste of time and fuel. Undoubtedly, if the vehicles are provided with timely and dynamic information related to road traffic conditions, any unexpected events or accidents, the safety and efficiency of the transportation system with respect to time, distance, fuel consumption and environmentally destructive emissions can be improved. In the field of computer and information science, Vehicular Ad hoc Network (VANET) have recently emerged as an effective tool for improving road safety through propagation of warning messages among the vehicles in the network about potential obstacles on the road ahead. VANET is a research area which is in more demand among the researchers, the automobile industries and scientists to discover about the loopholes and advantages of the vehicular networks so that efficient routing algorithms can be developed which can provide reliable and secure communication among the mobile nodes.In this paper, we propose a Groundwork Based Ad hoc On Demand Distance Vector Routing Protocol (GAODV) focus on how the Road Side Units (RSU’s) utilized in the architecture plays an important role for making the communication reliable. In the interval of finding the suitable path from source to destination the packet loss may occur and the delay also is counted if the required packet does not reach the specified destination on time. So to overcome delay, packet loss and to increase throughput GAODV approach is followed. The performance parameters in the GAODV comes out to be much better than computed in the traditional approach.


Author(s):  
P. Jeyadurga ◽  
S. Ebenezer Juliet ◽  
I. Joshua Selwyn ◽  
P. Sivanisha

The Internet of things (IoT) is one of the emerging technologies that brought revolution in many application domains such as smart cities, smart retails, healthcare monitoring and so on. As the physical objects are connected via internet, security risk may arise. This paper analyses the existing technologies and protocols that are designed by different authors to ensure the secure communication over internet. It additionally focuses on the advancement in healthcare systems while deploying IoT services.


2018 ◽  
Vol 31 (1) ◽  
pp. 277 ◽  
Author(s):  
Methaq Talib Gaata

  With the fast progress of information technology and the computer networks, it becomes very easy to reproduce and share the geospatial data due to its digital styles. Therefore, the usage of geospatial data suffers from various problems such as data authentication, ownership proffering, and illegal copying ,etc. These problems can represent the big challenge to future uses of the geospatial data. This paper introduces a new watermarking scheme to ensure the copyright protection of the digital vector map. The main idea of proposed scheme is based on transforming  the digital map to frequently domain using the Singular Value Decomposition (SVD) in order to determine suitable areas to insert the watermark data. The digital map is separated into the isolated parts.Watermark data are embedded within the nominated magnitudes in each part when satisfied the definite criteria. The efficiency of proposed watermarking scheme is assessed within statistical measures based on two factors which are fidelity and robustness. Experimental results demonstrate the proposed watermarking scheme representing ideal trade off for disagreement issue between distortion amount and robustness. Also, the proposed scheme shows  robust resistance for many kinds of attacks.


Sign in / Sign up

Export Citation Format

Share Document