The Fault Tolerance of Big Data Systems

Author(s):  
Xing Wu ◽  
Zhikang Du ◽  
Shuji Dai ◽  
Yazhou Liu
2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Zahid Ali Siddiqui ◽  
Jeong-A Lee ◽  
Unsang Park

Fault tolerance is of great importance for big data systems. Although several software-based application-level techniques exist for fault security in big data systems, there is a potential research space at the hardware level. Big data needs to be processed inexpensively and efficiently, for which traditional hardware architectures are, although adequate, not optimum for this purpose. In this paper, we propose a hardware-level fault tolerance scheme for big data and cloud computing that can be used with the existing software-level fault tolerance for improving the overall performance of the systems. The proposed scheme uses the concurrent error detection (CED) method to detect hardware-level faults, with the help of Scalable Error Detecting Codes (SEDC) and its checker. SEDC is an all unidirectional error detection (AUED) technique capable of detecting multiple unidirectional errors. The SEDC scheme exploits data segmentation and parallel encoding features for assigning code words. Consequently, the SEDC scheme can be scaled to any binary data length “n” with constant latency and less complexity, compared to other AUED schemes, hence making it a perfect candidate for use in big data processing hardware. We also present a novel area, delay, and power efficient, scalable fault secure checker design based on SEDC. In order to show the effectiveness of our scheme, we (1) compared the cost of hardware-based fault tolerance with an existing software-based fault tolerance technique used in HDFS and (2) compared the performance of the proposed checker in terms of area, speed, and power dissipation with the famous Berger code and m-out-of-2m code checkers. The experimental results show that (1) the proposed SEDC-based hardware-level fault tolerance scheme significantly reduces the average cost associated with software-based fault tolerance in a big data application, and (2) the proposed fault secure checker outperforms the state-of-the-art checkers in terms of area, delay, and power dissipation.


Author(s):  
Sergiy Gnatyuk ◽  
Vasyl Kinzeryavyy ◽  
Tetyana Sapozhnik ◽  
Iryna Sopilko ◽  
Nurgul Seilova ◽  
...  

Author(s):  
Rodrigo Laigner ◽  
Marcos Kalinowski ◽  
Sergio Lifschitz ◽  
Rodrigo Salvador Monteiro ◽  
Daniel de Oliveira

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Anouar Naoui ◽  
Brahim Lejdel ◽  
Mouloud Ayad ◽  
Abdelfattah Amamra ◽  
Okba kazar

PurposeThe purpose of this paper is to propose a distributed deep learning architecture for smart cities in big data systems.Design/methodology/approachWe have proposed an architectural multilayer to describe the distributed deep learning for smart cities in big data systems. The components of our system are Smart city layer, big data layer, and deep learning layer. The Smart city layer responsible for the question of Smart city components, its Internet of things, sensors and effectors, and its integration in the system, big data layer concerns data characteristics 10, and its distribution over the system. The deep learning layer is the model of our system. It is responsible for data analysis.FindingsWe apply our proposed architecture in a Smart environment and Smart energy. 10; In a Smart environment, we study the Toluene forecasting in Madrid Smart city. For Smart energy, we study wind energy foresting in Australia. Our proposed architecture can reduce the time of execution and improve the deep learning model, such as Long Term Short Memory10;.Research limitations/implicationsThis research needs the application of other deep learning models, such as convolution neuronal network and autoencoder.Practical implicationsFindings of the research will be helpful in Smart city architecture. It can provide a clear view into a Smart city, data storage, and data analysis. The 10; Toluene forecasting in a Smart environment can help the decision-maker to ensure environmental safety. The Smart energy of our proposed model can give a clear prediction of power generation.Originality/valueThe findings of this study are expected to contribute valuable information to decision-makers for a better understanding of the key to Smart city architecture. Its relation with data storage, processing, and data analysis.


Sign in / Sign up

Export Citation Format

Share Document