Method of Building a Security Vulnerability Information Collection and Management System for Analyzing the Security Vulnerabilities of IoT Devices

Author(s):  
Kisu Kim ◽  
Jongsoo Lee ◽  
Wonkang Jung
2019 ◽  
pp. 663-671
Author(s):  
Trushali S. Vasagade ◽  
Shabanam S. Tamboli ◽  
Archana D. Shinde

Author(s):  
Puspanjali Mallik

The internet of things (IoT) fulfils abundant demands of present society by facilitating the services of cutting-edge technology in terms of smart home, smart healthcare, smart city, smart vehicles, and many more, which enables present day objects in our environment to have network communication and the capability to exchange data. These wide range of applications are collected, computed, and provided by thousands of IoT elements placed in open spaces. The highly interconnected heterogeneous structure faces new types of challenges from a security and privacy concern. Previously, security platforms were not so capable of handling these complex platforms due to different communication stacks and protocols. It seems to be of the utmost importance to keep concern about security issues relating to several attacks and vulnerabilities. The main motive of this chapter is to analyze the broad overview of security vulnerabilities and its counteractions. Generally, it discusses the major security techniques and protocols adopted by the IoT and analyzes the attacks against IoT devices.


2020 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
Ritu Chauhan ◽  
Gatha Tanwar

The internet of things has brought in innovations in the daily lives of users. The enthusiasm and openness of consumers have fuelled the manufacturers to dish out new devices with more features and better aesthetics. In an attempt to keep up with the competition, the manufacturers are not paying enough attention to cyber security of these smart devices. The gravity of security vulnerabilities is further aggravated due to their connected nature. As a result, a compromised device would not only stop providing the intended service but could also act as a host for malware introduced by an attacker. This study has focused on 10 manufacturers, namely Fitbit, D-Link, Edimax, Ednet, Homematic, Smarter, Osram, Belkin Wemo, Philips Hue, and Withings. The authors studied the security issues which have been raised in the past and the communication protocols used by devices made by these brands. It was found that while security vulnerabilities could be introduced due to lack of attention to details while designing an IoT device, they could also get introduced by the protocol stack and inadequate system configuration. Researchers have iterated that protocols like TCP, UDP, and mDNS have inherent security shortcomings and manufacturers need to be mindful of the fact. Furthermore, if protocols like EAPOL or Zigbee have been used, then the device developers need to be aware of safeguarding the keys and other authentication mechanisms. The authors also analysed the packets captured during setup of 23 devices by the above-mentioned manufacturers. The analysis gave insight into the underlying protocol stack preferred by the manufacturers. In addition, they also used count vectorizer to tokenize the protocols used during device setup and use them to model a multinomial classifier to identify the manufacturers. The intent of this experiment was to determine if a manufacturer could be identified based on the tokenized protocols. The modelled classifier could then be used to drive an algorithm to checklist against possible security vulnerabilities, which are characteristic of the protocols and the manufacturer history. Such an automated system will be instrumental in regular diagnostics of a smart system. The authors then wrapped up this report by suggesting some measures a user can take to protect their local networks and connected devices.


Sign in / Sign up

Export Citation Format

Share Document