Epidemic Threshold in Temporally-Switching Networks

Author(s):  
Leo Speidel ◽  
Konstantin Klemm ◽  
Víctor M. Eguíluz ◽  
Naoki Masuda
2016 ◽  
Vol 46 (3) ◽  
pp. 345-355 ◽  
Author(s):  
Mohammad Reza Sanatkar ◽  
Warren N. White ◽  
Balasubramaniam Natarajan ◽  
Caterina M. Scoglio ◽  
Karen A. Garrett

1990 ◽  
Vol 137 (4) ◽  
pp. 239 ◽  
Author(s):  
D.A. Nicole ◽  
E.K. Lloyd ◽  
J.S. Ward
Keyword(s):  

1993 ◽  
Vol 140 (5) ◽  
pp. 337 ◽  
Author(s):  
D.K. Hunter ◽  
P.J. Legg ◽  
I. Andonovic

Author(s):  
Juan Yang ◽  
Valentina Marziano ◽  
Xiaowei Deng ◽  
Giorgio Guzzetta ◽  
Juanjuan Zhang ◽  
...  

AbstractCOVID-19 vaccination is being conducted in over 200 countries and regions to control SARS-CoV-2 transmission and return to a pre-pandemic lifestyle. However, understanding when non-pharmaceutical interventions (NPIs) can be lifted as immunity builds up remains a key question for policy makers. To address this, we built a data-driven model of SARS-CoV-2 transmission for China. We estimated that, to prevent the escalation of local outbreaks to widespread epidemics, stringent NPIs need to remain in place at least one year after the start of vaccination. Should NPIs alone be capable of keeping the reproduction number (Rt) around 1.3, the synergetic effect of NPIs and vaccination could reduce the COVID-19 burden by up to 99% and bring Rt below the epidemic threshold in about 9 months. Maintaining strict NPIs throughout 2021 is of paramount importance to reduce COVID-19 burden while vaccines are distributed to the population, especially in large populations with little natural immunity.


2021 ◽  
Vol 10 (s1) ◽  
Author(s):  
Said Gounane ◽  
Yassir Barkouch ◽  
Abdelghafour Atlas ◽  
Mostafa Bendahmane ◽  
Fahd Karami ◽  
...  

Abstract Recently, various mathematical models have been proposed to model COVID-19 outbreak. These models are an effective tool to study the mechanisms of coronavirus spreading and to predict the future course of COVID-19 disease. They are also used to evaluate strategies to control this pandemic. Generally, SIR compartmental models are appropriate for understanding and predicting the dynamics of infectious diseases like COVID-19. The classical SIR model is initially introduced by Kermack and McKendrick (cf. (Anderson, R. M. 1991. “Discussion: the Kermack–McKendrick Epidemic Threshold Theorem.” Bulletin of Mathematical Biology 53 (1): 3–32; Kermack, W. O., and A. G. McKendrick. 1927. “A Contribution to the Mathematical Theory of Epidemics.” Proceedings of the Royal Society 115 (772): 700–21)) to describe the evolution of the susceptible, infected and recovered compartment. Focused on the impact of public policies designed to contain this pandemic, we develop a new nonlinear SIR epidemic problem modeling the spreading of coronavirus under the effect of a social distancing induced by the government measures to stop coronavirus spreading. To find the parameters adopted for each country (for e.g. Germany, Spain, Italy, France, Algeria and Morocco) we fit the proposed model with respect to the actual real data. We also evaluate the government measures in each country with respect to the evolution of the pandemic. Our numerical simulations can be used to provide an effective tool for predicting the spread of the disease.


Sign in / Sign up

Export Citation Format

Share Document