Classification Algorithms for Prediction of Lumbar Spine Pathologies

Author(s):  
Rajni Bedi ◽  
Ajay Shiv Sharma
2002 ◽  
Vol 7 (4) ◽  
pp. 8-10
Author(s):  
Christopher R. Brigham ◽  
Leon H. Ensalada

Abstract Recurrent radiculopathy is evaluated by a different approach in the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fifth Edition, compared to that in the Fourth Edition. The AMA Guides, Fifth Edition, specifies several occasions on which the range-of-motion (ROM), not the Diagnosis-related estimates (DRE) method, is used to rate spinal impairments. For example, the AMA Guides, Fifth Edition, clarifies that ROM is used only for radiculopathy caused by a recurrent injury, including when there is new (recurrent) disk herniation or a recurrent injury in the same spinal region. In the AMA Guides, Fourth Edition, radiculopathy was rated using the Injury Model, which is termed the DRE method in the Fifth Edition. Also, in the Fourth Edition, for the lumbar spine all radiculopathies resulted in the same impairment (10% whole person permanent impairment), based on that edition's philosophy that radiculopathy is not quantifiable and, once present, is permanent. A rating of recurrent radiculopathy suggests the presence of a previous impairment rating and may require apportionment, which is the process of allocating causation among two or more factors that caused or significantly contributed to an injury and resulting impairment. A case example shows the divergent results following evaluation using the Injury Model (Fourth Edition) and the ROM Method (Fifth Edition) and concludes that revisions to the latter for rating permanent impairments of the spine often will lead to different results compared to using the Fourth Edition.


2000 ◽  
Vol 14 (3) ◽  
pp. 151-158 ◽  
Author(s):  
José Luis Cantero ◽  
Mercedes Atienza

Abstract High-resolution frequency methods were used to describe the spectral and topographic microstructure of human spontaneous alpha activity in the drowsiness (DR) period at sleep onset and during REM sleep. Electroencephalographic (EEG), electrooculographic (EOG), and electromyographic (EMG) measurements were obtained during sleep in 10 healthy volunteer subjects. Spectral microstructure of alpha activity during DR showed a significant maximum power with respect to REM-alpha bursts for the components in the 9.7-10.9 Hz range, whereas REM-alpha bursts reached their maximum statistical differentiation from the sleep onset alpha activity at the components between 7.8 and 8.6 Hz. Furthermore, the maximum energy over occipital regions appeared in a different spectral component in each brain activation state, namely, 10.1 Hz in drowsiness and 8.6 Hz in REM sleep. These results provide quantitative information for differentiating the drowsiness alpha activity and REM-alpha by studying their microstructural properties. On the other hand, these data suggest that the spectral microstructure of alpha activity during sleep onset and REM sleep could be a useful index to implement in automatic classification algorithms in order to improve the differentiation between the two brain states.


1990 ◽  
Vol 9 (2) ◽  
pp. 419-448 ◽  
Author(s):  
Robert G. Watkins ◽  
William H. Dillin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document