Active Regeneration of Diesel Particulate Filter Using Microwave Energy for Exhaust Emission Control

Author(s):  
Caneon Kurien ◽  
Ajay Kumar Srivastava
2019 ◽  
pp. 146808741987457 ◽  
Author(s):  
Jun Zhang ◽  
Yanfei Li ◽  
Victor W Wong ◽  
Shijin Shuai ◽  
Jinzhu Qi ◽  
...  

Diesel particulate filters are indispensable for diesel engines to meet the increasingly stringent emission regulations. A large amount of ash would accumulate in the diesel particulate filter over time, which would significantly affect the diesel particulate filter performance. In this work, the lubricant-derived ash effects on diesel particulate filter pressure drop, diesel particulate filter filtration performance, diesel particulate filter temperature field during active regeneration, and diesel particulate filter downstream emissions during active regeneration were studied on an engine test bench. The test results show that the ash accumulated in the diesel particulate filter would decrease the diesel particulate filter pressure drop due to the “membrane effect” when the diesel particulate filter ash loading is lower than about 10 g/L, beyond which the diesel particulate filter pressure drop would be increased due to the reduction of diesel particulate filter effective volume. The ash loaded in the diesel particulate filter could significantly improve the diesel particulate filter filtration efficiency because it would fill the pores of diesel particulate filter wall. The diesel particulate filter peak temperature during active regeneration is consistent with the diesel particulate filter initial actual soot loading density prior to regeneration at various diesel particulate filter ash loading levels, while the diesel particulate filter maximum temperature gradient would increase with the diesel particulate filter ash loading increase, whether the diesel particulate filter is regenerated at the same soot loading level or the same diesel particulate filter pressure drop level. The ash accumulation in the diesel particulate filter shows little effects on diesel particulate filter downstream CO, total hydrocarbons, N2O emissions, and NO2/NO x ratio during active regeneration. However, a small amount of SO2 emissions was observed when the diesel particulate filter ash loading is higher than 10 g/L. The ash accumulated in the diesel particulate filter would increase the diesel particulate filter downstream sub-23 nm particle emissions but decrease larger particle emissions during active regeneration.


Author(s):  
Amy M. Peterson ◽  
Po-I Lee ◽  
Ming-Chia Lai ◽  
Ming-Cheng Wu ◽  
Craig L. DiMaggio ◽  
...  

This paper compares 20% bio-diesel (B20-choice white grease) fuel with baseline ultra low sulfur diesel (ULSD) fuel on the emissions and performance of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) coupled to a light-duty 4-cylinder 2.8-liter common-rail DI diesel engine. The present paper focuses on the comparison of the fuel effects on loading and active regeneration of the DPF between B20 and ULSD. B20, in general, produces less soot and has lower regeneration temperature compared to soot loaded with ULSD. NO2 concentrations before the DPF were found to be 6% higher with B20, indicating more availability of NO2 to oxidize the soot. Exhaust speciation of the NO2 availability indicates that the slight increase in NOx from B20 is not the dominant cause for the lower temperature regeneration and faster regeneration rate but the reactivity of the soot that is in the DPF. Formaldehyde concentrations are found to be higher with B20 during regeneration due to increased oxygen concentrations in the exhaust stream. Finally the oil dilution effect due to post injection to actively regenerate the DPF is also investigated using a prototype oil sensor and FTIR instrumentation. Utilizing an active regeneration strategy accentuates the possibility of fuel oil dilution of the engine oil. The onboard viscosity oil sensor used was in good agreement with the viscosity bench test and FTIR analysis and provided oil viscosity measurement over the course of the project. Operation with B20 shows significant fuel dilution and needs to be monitored to prevent engine deterioration.


Sign in / Sign up

Export Citation Format

Share Document