Polycyclic Aromatic Hydrocarbons/Nitro-polycyclic Aromatic Hydrocarbons from Combustion Sources

Author(s):  
Xiaoyang Yang ◽  
Kazuichi Hayakawa
2010 ◽  
Vol 7 (6) ◽  
pp. 504 ◽  
Author(s):  
Petr Kukučka ◽  
Gerhard Lammel ◽  
Alice Dvorská ◽  
Jana Klánová ◽  
Andrea Möller ◽  
...  

Environmental context Is long-range transport from populated and industrialised areas to blame for pollution of remote regions? We report that, for the world's most remote region, Antarctica, and one prominent class of global pollutants, polycyclic aromatic hydrocarbons, long-range transport from other continents has not contributed significantly to recent snow contamination. Rather, the major sources are regional scientific stations and ocean transport, mostly tourism. Abstract Firn samples attributed to the period between 2002 and 2005 were collected from a snow pit on the Ekström Shelf Ice in the Weddell Sea (70°43.8′S, 8°25.1′W). Low-volume meltwater samples (5 mL) were extracted by solid-phase microextraction (SPME) and analysed for polycyclic aromatic hydrocarbons (PAHs) by gas chromatography-mass spectrometry. The recovery of the analytical method for the 4–6 ring PAHs was low. PAH concentrations in snow were found within the range of 26–197 ng L–1. The most prevailing substances were determined to be naphthalene, 1- and 2-methylnaphthalene, acenaphthylene, acenaphthene and phenanthrene, with naphthalene accounting for an overall mean of 82% of total PAH. Potential emission sources of PAHs in snow were studied using back-trajectory statistics and available emission data of combustion sources in and around Antarctica. The distance to the sources (ships and research stations) in this region was found to control the snow PAH concentrations. There was no indication for intercontinental transport or marine sources.


2015 ◽  
Vol 15 (13) ◽  
pp. 7735-7752 ◽  
Author(s):  
B. L. van Drooge ◽  
J. O. Grimalt

Abstract. Atmospheric particulate matter (PM) was fractionated in six aerodynamic sizes, > 7.2, 7.2–3, 3–1.5, 1.5–1, 1–0.5 and < 0.5 μm, using a cascade impactor. These fractions were collected at urban and rural sites during warm and cold seasons. Organic tracer compounds, such as levoglucosan, isoprene, pinene oxidation products, polycyclic aromatic hydrocarbons and quinones, were analyzed by gas chromatography coupled with mass spectrometry. These analyses showed that the composition in the smallest size fractions (< 0.5 μm) was more uniform than in the larger sizes (7.2> PM > 0.5 μm). Thus, markers of photochemically synthesized organic compounds or combustion sources, either biomass burning or traffic emissions, were predominantly observed in the fraction < 0.5 μm, whereas the larger particles were composed of mixed sources from combustion processes, vegetation emissions, soil resuspension, road dust, urban lifestyle activities and photochemically synthesized organic compounds. Important seasonal differences were observed at the rural site. In the < 0.5 μm fraction these were related to a strong predominance of biomass burning in the cold period and photochemically transformed biogenic organic compounds in the warm period. In the 7.2 > PM > 0.5 μm fractions the differences involved predominantly soil-sourced compounds in the warm period and mixed combustion sources, photochemical products and vegetation emissions in the cold. Multivariate curve resolution/alternating least squares showed that these organic aerosols essentially originated from six source components. Four of them reflected primary emissions related to either natural products, e.g., vegetation emissions and upwhirled soil dust, or anthropogenic contributions, e.g., combustion products and compounds related to urban lifestyle activities like vehicular exhaust and tobacco smoking. Two secondary organic aerosol components were identified. They accumulated in the smallest (< 0.5 μm) or in the larger fractions (> 0.5 μm) and involved strong or mild photochemical transformations of vegetation precursor molecules, respectively. Toxicologically relevant information was also disclosed with the present approach. Thus, the strong predominance of biomass burning residues at the rural site during the cold period involved atmospheric concentrations of polycyclic aromatic hydrocarbons that were 3 times higher than at the urban sites and benzo[a]pyrene concentrations above legal recommendations.


2012 ◽  
Vol 518-523 ◽  
pp. 1516-1519
Author(s):  
Xia Hong Zhang ◽  
Ke Hua Chen ◽  
Ru Ping Zhang

The PAHs contents in water of the provincial control section river are within the range of 58.3~1328.5μg/L with an average of 387.72μg/L in winter, within the range of 5.9~188.4μg/L with an average of 77.46μg/L in autumn, within the range of 16.7~1203.3μg/L with an average of 475.05μg/L in summer, respectively. The Benzo[a]pyrene was not detected. It is suggested that PAHs in water of the provincial control section river mostly came from combustion sources.


Author(s):  
Xiaoyang Yang ◽  
Shijie Liu ◽  
Yuanguan Gao ◽  
Wenjuan Zhao ◽  
Yu Liu ◽  
...  

The varying concentrations of polycyclic aromatic hydrocarbons (PAHs) at remote islands is an important indicator, demonstrating the contributions from different regional combustion sources. In this study, gaseous and particulate PAHs were measured at Weizhou Island in the Gulf of Tonkin from 15th March to 14th April, 2015. The concentrations of PAHs ranged from 116.22 to 186.74 ng/m3 and from 40.19 to 61.86 ng/m3 in gas and particulate phase, respectively, which were much higher than those of some remote sites in Asia. Phenanthrene, fluoranthene, pyrene, and chrysene, which were mainly found in diesel vehicle emissions, had relatively high concentrations in both gas and particulate phases. According to the comprehensive results of back trajectory cluster analysis and diagnostic ratios, the local vessel emission was probably the main source of PAHs, which was much more important than the coal and biomass combustion sources from remoter regions. The toxicities represented by ∑PAH7, benzo(a)pyrene-equivalent carcinogenic power, and 2,3,7,8-tetrachlorodibenzo-p-dioxin-based total toxicity potency are much higher in particulate phase than those in gas phase. However, the toxicities of gas phase should not be neglected from the point of view of indirect-acting mutagenicities due to the high contribution of fluoranthene.


2019 ◽  
Vol 64 (1) ◽  
pp. 55-67
Author(s):  
Vlad Pӑnescu ◽  
◽  
Mihaela Cӑtӑlina Herghelegiu ◽  
Sorin Pop ◽  
Mircea Anton ◽  
...  

2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


Sign in / Sign up

Export Citation Format

Share Document