MgO Doped Lithium Niobate Waveguides Based All Optical Modulator

Author(s):  
Sanjay Kumar ◽  
Ghanshyam Singh ◽  
Vijay Janyani ◽  
Oleh Buryy ◽  
Ubizskii Serhij ◽  
...  
Silicon ◽  
2021 ◽  
Author(s):  
Mohammad Moradi ◽  
Masoud Mohammadi ◽  
Saeed Olyaee ◽  
Mahmood Seifouri

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 908
Author(s):  
Fabrizio Ciciulla ◽  
Annamaria Zaltron ◽  
Riccardo Zamboni ◽  
Cinzia Sada ◽  
Francesco Simoni ◽  
...  

In this study, we present a new configuration of the recently reported optofluidic platform exploiting liquid crystals reorientation in lithium niobate channels. In order to avoid the threshold behaviour observed in the optical control of the device, we propose microchannels realized in a x-cut crystal closed by a z-cut crystal on the top. In this way, the light-induced photovoltaic field is not uniform inside the liquid crystal layer and therefore the conditions for a thresholdless reorientation are realized. We performed simulations of the photovoltaic effect based on the well assessed model for Lithium Niobate, showing that not uniform orientation and value of the field should be expected inside the microchannel. In agreement with the re-orientational properties of nematic liquid crystals, experimental data confirm the expected thresholdless behaviour. The observed liquid crystal response exhibits two different regimes and the response time shows an unusual dependence on light intensity, both features indicating the presence of additional photo-induced fields appearing above a light intensity of 107 W/m2.


2019 ◽  
Vol 12 (11) ◽  
pp. 112002
Author(s):  
Jing Han ◽  
Mei Qi ◽  
Hao Wu ◽  
Ruiduo Wang ◽  
Duidui Li ◽  
...  

2010 ◽  
Vol 97 (7) ◽  
pp. 073113 ◽  
Author(s):  
M. V. Ermolenko ◽  
O. V. Buganov ◽  
S. A. Tikhomirov ◽  
V. V. Stankevich ◽  
S. V. Gaponenko ◽  
...  

ACS Omega ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 7576-7584
Author(s):  
Mohammed AlAloul ◽  
Mahmoud Rasras

Author(s):  
V. B. Zalesski ◽  
A. I. Konoiko ◽  
V. M. Kravchenko ◽  
H. S. Kuzmitskaya

In this paper, we considered the method of amplitude electro-optical modulation of radiation using sequences of Fabry-Perot resonators based on the transverse electro-optical effect on the example of lithium niobate LiNbO3. With this method, it is possible to significantly reduce the voltage of the control electromagnetic field of the electro-optical amplitude modulator operating in the transmission mode of the light beam while maintaining its high efficiency. The reduction of the control voltage is achieved by increasing the number of Fabry-Perot resonators installed in series and the phase shift relative to the extremum of the transmittance function. This method allows to diminish the duration of the received light signals which leads to an increase in the clock frequency while maintaining a high efficiency of the radiation modulation. Diminishing the duration of light signals is achieved by using separate modulation channels of two sequences of electro-optical Fabry-Perot resonators, the first of which works on the transmission and the second one on the reflection. Increasing the clock frequency at the output of the modulator is achieved by summing the signals coming from several modulation channels. It is shown that the value of the control voltage for an amplitude electro-optical modulator based on a sequence of Fabry-Perot resonators made of lithium niobate LiNbO3, with an operating wavelength of 1.307 microns, can be 4 V in the case when its initial operating point corresponds to the maximum transmittance. The control voltage is 2 V if the initial operating point is shifted in phase relative to the extremum of the transmittance function.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Feiying Sun ◽  
Changbin Nie ◽  
Xingzhan Wei ◽  
Hu Mao ◽  
Yupeng Zhang ◽  
...  

Abstract Two-dimensional (2D) materials with excellent optical properties and complementary metal-oxide-semiconductor (CMOS) compatibility have promising application prospects for developing highly efficient, small-scale all-optical modulators. However, due to the weak nonlinear light-material interaction, high power density and large contact area are usually required, resulting in low light modulation efficiency. In addition, the use of such large-band-gap materials limits the modulation wavelength. In this study, we propose an all-optical modulator integrated Si waveguide and single-layer MoS2 with a plasmonic nanoslit, wherein modulation and signal light beams are converted into plasmon through nanoslit confinement and together are strongly coupled to 2D MoS2. This enables MoS2 to absorb signal light with photon energies less than the bandgap, thereby achieving high-efficiency amplitude modulation at 1550 nm. As a result, the modulation efficiency of the device is up to 0.41 dB μm−1, and the effective size is only 9.7 µm. Compared with other 2D material-based all-optical modulators, this fabricated device exhibits excellent light modulation efficiency with a micron-level size, which is potential in small-scale optical modulators and chip-integration applications. Moreover, the MoS2-plasmonic nanoslit modulator also provides an opportunity for TMDs in the application of infrared optoelectronics.


Sign in / Sign up

Export Citation Format

Share Document