Risk Theory-Based Safety Evaluation of Passengers in Rail Transit Station

Author(s):  
Yunxiao Zheng ◽  
Yong Qin ◽  
Jianyuan Guo ◽  
Limin Jia ◽  
Jianghua Gao
2012 ◽  
Vol 253-255 ◽  
pp. 1995-2000
Author(s):  
Qiao Mei Tang ◽  
Li Ping Shen ◽  
Xian Yong Tang

large passenger flow is a common condition of urban transit operation, and the station bears the pressure of large passenger flow directly. This paper analyzes the reason for the appearance of large passenger flow and the characteristics of it, discusses the principles and methods that the station can apply under large passenger flow combined with the passenger’s transport process and the operation process.


2021 ◽  
Author(s):  
Yuzhuang Pian ◽  
Jinshuan Peng ◽  
Lunhui Xu ◽  
Pan Wu ◽  
Jinlong Li

2021 ◽  
pp. 274-283
Author(s):  
Yujing Cai ◽  
Ming Zhang ◽  
Zhifei Wang ◽  
Weimeng Wang

Author(s):  
Sutapa Samanta ◽  
Manoj K. Jha

The emergence of artificial intelligence (AI)-based optimization heuristics like genetic and ant algorithms is useful in solving many complex transportation location optimization problems. The suitability of such algorithms depends on the nature of the problem to be solved. This study examines the suitability of genetic and ant algorithms in two distinct and complex transportation problems: (1) highway alignment optimization and (2) rail transit station location optimization. A comparative study of the two algorithms is presented in terms of the quality of results. In addition, Ant algorithms (AAs) have been modified to search in a global space for both problems, a significant departure from traditional AA application in local search problems. It is observed that for the two optimization problems both algorithms give almost similar solutions. However, the ant algorithm has the inherent limitation of being effective only in discrete search problems. When applied to continuous search spaces ant algorithm requires the space to be sufficiently discretized. On the other hand, genetic algorithms can be applied to both discrete and continues spaces with reasonable confidence. The application of AA in global search seems promising and opens up the possibility of its application in other complex optimization problems.


Author(s):  
Hui Xu ◽  
Yang Li ◽  
Lin Wang

Risk events frequently occur in “complex urban public spaces” (CUPSs) and cause serious economic losses and casualties. To reduce the risks and enhance the system resilience, this paper formulates a theoretical framework to assess the resilience of CUPSs. Resilience is defined as the ratio of preparedness to vulnerability, according to the implication of the concept. Three-level practical indicator systems were established for these two dimensions, respectively. Furthermore, a hybrid approach combining the Analytic Network Process (ANP) and the Decision-Making Trial and Evaluation Laboratory (DEMATEL) was adopted. The Chongqing West Railway Station (the Station (W)) and the Lianglukou Rail Transit Station (the Station (L)) were used for a case study. The results showed that the Chongqing West Railway Station was more resilient to risks than the Lianglukou Rail Transit Station. Therefore, the proposed theoretical framework could be applied in assessing the resilience level of CUPSs. Resilience improvement strategies can be formulated according to the assessment results. Furthermore, the practical indicators could also provide references for urban disaster management.


Sign in / Sign up

Export Citation Format

Share Document