Automated Tool for Extraction of Software Fault Data

Author(s):  
Pradeep Singh ◽  
Shrish Verma
Author(s):  
Fatemeh Alighardashi ◽  
Mohammad Ali Zare Chahooki

Improving the software product quality before releasing by periodic tests is one of the most expensive activities in software projects. Due to limited resources to modules test in software projects, it is important to identify fault-prone modules and use the test sources for fault prediction in these modules. Software fault predictors based on machine learning algorithms, are effective tools for identifying fault-prone modules. Extensive studies are being done in this field to find the connection between features of software modules, and their fault-prone. Some of features in predictive algorithms are ineffective and reduce the accuracy of prediction process. So, feature selection methods to increase performance of prediction models in fault-prone modules are widely used. In this study, we proposed a feature selection method for effective selection of features, by using combination of filter feature selection methods. In the proposed filter method, the combination of several filter feature selection methods presented as fused weighed filter method. Then, the proposed method caused convergence rate of feature selection as well as the accuracy improvement. The obtained results on NASA and PROMISE with ten datasets, indicates the effectiveness of proposed method in improvement of accuracy and convergence of software fault prediction.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2895
Author(s):  
Hubert Gattringer ◽  
Andreas Müller ◽  
Philip Hoermandinger

Robotic manipulators physically interacting with their environment must be able to measure contact forces/torques. The standard approach to this end is attaching force/torque sensors directly at the end-effector (EE). This provides accurate measurements, but at a significant cost. Indirect measurement of the EE-loads by means of torque sensors at the actuated joint of a robot is an alternative, in particular for series-elastic actuators, but requires dedicated robot designs and significantly increases costs. In this paper, two alternative sensor concept for indirect measurement of EE-loads are presented. Both sensors are located at the robot base. The first sensor design involves three load cells on which the robot is mounted. The second concept consists of a steel plate with four spokes, at which it is suspended. At each spoke, strain gauges are attached to measure the local deformation, which is related to the load at the sensor plate (resembling the main principle of a force/torque sensor). Inferring the EE-load from the so determined base wrench necessitates a dynamic model of the robot, which accounts for the static as well as dynamic loads. A prototype implementation of both concepts is reported. Special attention is given to the model-based calibration, which is crucial for these indirect measurement concepts. Experimental results are shown when the novel sensors are employed for a tool changing task, which to some extend resembles the well-known peg-in-the-hole problem.


2021 ◽  
Vol 172 ◽  
pp. 114595
Author(s):  
Sushant Kumar Pandey ◽  
Ravi Bhushan Mishra ◽  
Anil Kumar Tripathi

Author(s):  
Binbin Xi ◽  
Dawei Jiang ◽  
Shuhua Li ◽  
Jerome R Lon ◽  
Yunmeng Bai ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document