scholarly journals AutoVEM: an automated tool to real-time monitor epidemic trends and key mutations in SARS-CoV-2 evolution

Author(s):  
Binbin Xi ◽  
Dawei Jiang ◽  
Shuhua Li ◽  
Jerome R Lon ◽  
Yunmeng Bai ◽  
...  
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5236
Author(s):  
Enrique Piñero-Fuentes ◽  
Salvador Canas-Moreno ◽  
Antonio Rios-Navarro ◽  
Manuel Domínguez-Morales ◽  
José Luis Sevillano ◽  
...  

The change from face-to-face work to teleworking caused by the pandemic has induced multiple workers to spend more time than usual in front of a computer; in addition, the sudden installation of workstations in homes means that not all of them meet the necessary characteristics for the worker to be able to position himself/herself comfortably with the correct posture in front of their computer. Furthermore, from the point of view of the medical personnel in charge of occupational risk prevention, an automated tool able to quantify the degree of incorrectness of a postural habit in a worker is needed. For this purpose, in this work, a system based on the postural detection of the worker is designed, implemented and tested, using a specialized hardware system that processes video in real time through convolutional neural networks. This system is capable of detecting the posture of the neck, shoulders and arms, providing recommendations to the worker in order to prevent possible health problems, due to poor posture. The results of the proposed system show that this video processing can be carried out in real time (up to 25 processed frames/sec) with a low power consumption (less than 10 watts) using specialized hardware, obtaining an accuracy of over 80% in terms of the pattern detected.


Author(s):  
Rafiq Ahmad ◽  
Peter Plapper

Multi-axis machines are growing rapidly their precision and complexity with the increasing importance of machine intelligence, automation, optimization and safety. It is necessary to identify collision risks and avoid them in manufacturing otherwise production stops may cost a huge amount to the manufacturing company. This study has focused on safe trajectory generation for CNC machines especially focusing on high risked non-functional trajectories. These machines should be able to see any unwilling situation (i.e. collisions) in their vicinity and must be able to detect and react automatically in real-time for safe tool movements. Currently CAM software and some multi-axis machines are able to detect collisions but they do not have any solution to avoid such collisions automatically. The main objective is to make multi-axis machine vision system effective enough that it can see all its activities regarding collisions and can react or command automatically online as well as off-line for real and virtual productions. In presence of obstacles during manufacturing, the proposed approach will provide decisions regarding trajectory correction and improvement automatically. The proposed vision concept is able to take into account the evolution of the scene i.e. the aspects of changes to the obstacle like shape, size or presence during production. The application presented in this paper is for 2D traversal safe online trajectories generation in virtual simulated dynamic environment, which will be adapted to the real-time real machining scenarios at shop-floor by integrating it with STEP-NC technology in future.


2021 ◽  
Author(s):  
Binbin Xi ◽  
Shuhua Li ◽  
Wei Liu ◽  
Dawei Jiang ◽  
Yunmeng Bai ◽  
...  

In our previous work, we developed an automated tool, AutoVEM, for real-time monitoring the candidate key mutations and epidemic trends of SARS-CoV-2. In this research, we further developed AutoVEM into AutoVEM2. AutoVEM2 is composed of three modules, including call module, analysis module, and plot module, which can be used modularly or as a whole for any virus, as long as the corresponding reference genome is provided. Therefore, it is much more flexible than AutoVEM. Here, we analyzed three existing viruses by AutoVEM2, including SARS-CoV-2, HBV and HPV-16, to show the functions, effectiveness and flexibility of AutoVEM2. We found that the N501Y locus was almost completely linked to the other 16 loci in SARS-CoV-2 genomes from the UK and Europe. Among the 17 loci, 5 loci were on the S protein and all of the five mutations cause amino acid changes, which may influence the epidemic traits of SARS-CoV-2. And some candidate key mutations of HBV and HPV-16, including T350G of HPV-16 and C659T of HBV, were detected. In brief, we developed a flexible automated tool to analyze candidate key mutations and epidemic trends for any virus, which would become a standard process for virus analysis based on genome sequences in the future.


1979 ◽  
Vol 44 ◽  
pp. 41-47
Author(s):  
Donald A. Landman

This paper describes some recent results of our quiescent prominence spectrometry program at the Mees Solar Observatory on Haleakala. The observations were made with the 25 cm coronagraph/coudé spectrograph system using a silicon vidicon detector. This detector consists of 500 contiguous channels covering approximately 6 or 80 Å, depending on the grating used. The instrument is interfaced to the Observatory’s PDP 11/45 computer system, and has the important advantages of wide spectral response, linearity and signal-averaging with real-time display. Its principal drawback is the relatively small target size. For the present work, the aperture was about 3″ × 5″. Absolute intensity calibrations were made by measuring quiet regions near sun center.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


Author(s):  
K. Harada ◽  
T. Matsuda ◽  
J.E. Bonevich ◽  
M. Igarashi ◽  
S. Kondo ◽  
...  

Previous observations of magnetic flux-lines (vortex lattices) in superconductors, such as the field distribution of a flux-line, and flux-line dynamics activated by heat and current, have employed the high spatial resolution and magnetic sensitivity of electron holography. And recently, the 2-D static distribution of vortices was also observed by this technique. However, real-time observations of the vortex lattice, in spite of scientific and technological interest, have not been possible due to experimental difficulties. Here, we report the real-time observation of vortex lattices in a thin superconductor, by means of Lorentz microscopy using a 300 kV field emission electron microscope. This technique allows us to observe the dynamic motion of individual vortices and record the events on a VTR system.The experimental arrangement is shown in Fig. 1. A Nb thin film for transmission observation was prepared by chemical etching. The grain size of the film was increased by annealing, and single crystals were observed with a thickness of 50∼90 nm.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1012-1013
Author(s):  
Uyen Tram ◽  
William Sullivan

Embryonic development is a dynamic event and is best studied in live animals in real time. Much of our knowledge of the early events of embryogenesis, however, comes from immunofluourescent analysis of fixed embryos. While these studies provide an enormous amount of information about the organization of different structures during development, they can give only a static glimpse of a very dynamic event. More recently real-time fluorescent studies of living embryos have become much more routine and have given new insights to how different structures and organelles (chromosomes, centrosomes, cytoskeleton, etc.) are coordinately regulated. This is in large part due to the development of commercially available fluorescent probes, GFP technology, and newly developed sensitive fluorescent microscopes. For example, live confocal fluorescent analysis proved essential in determining the primary defect in mutations that disrupt early nuclear divisions in Drosophila melanogaster. For organisms in which GPF transgenics is not available, fluorescent probes that label DNA, microtubules, and actin are available for microinjection.


Sign in / Sign up

Export Citation Format

Share Document