Effects of Pre-compression on the Microstructure and Corrosion Resistance of Cu50Zr50 Bulk Metallic Glass Matrix Composites

2018 ◽  
pp. 275-283
Author(s):  
Sicheng Zhai ◽  
Wen Wang ◽  
Yan Wang
2011 ◽  
Vol 59 (10) ◽  
pp. 4126-4137 ◽  
Author(s):  
J.W. Qiao ◽  
A.C. Sun ◽  
E.W. Huang ◽  
Y. Zhang ◽  
P.K. Liaw ◽  
...  

2005 ◽  
Vol 87 (5) ◽  
pp. 051905 ◽  
Author(s):  
Y. F. Sun ◽  
B. C. Wei ◽  
Y. R. Wang ◽  
W. H. Li ◽  
T. L. Cheung ◽  
...  

2020 ◽  
Vol 1158 ◽  
pp. 43-97
Author(s):  
Muhammad Musaddique Ali Rafique

Bulk metallic glass matrix composites have emerged as new potential material for structural engineering applications owing to their superior strength, hardness and high elastic strain limit. However, their behaviour is dubious. They manifest brittleness and inferior ductility which limit their applications. Various methods have been proposed to overcome this problem. Out of these, introduction of foreign particles (inoculants) during solidification have been proposed as most effective. In this study, an effort has been made to delimit this drawback. A systematic tale has been presented which explain the evolution of microstructure in Zr47.5Cu45.5Al5Co2 and Zr65Cu15Al10Ni10 bulk metallic glass matrix composites with varying percentage of ZrC inoculant as analysed by secondary electron and back scatter electron imaging of as cast unetched samples. A support is provided to hypothesis that inoculation remain successful in promoting phase formation and crystallinity and improve toughness.


2018 ◽  
Vol 27 (6) ◽  
pp. 096369351802700
Author(s):  
Yunpeng Jiang

In this contribution, an analytical model was formulated to predict the tensile stress-strain relations of bulk metallic glass matrix composites (BMGCs) based on Weng's theoretical frame for dual-ductile composites. For in-situ BMGCs, BMG matrix also exhibits the elastic-plastic deform response as well as the dendrite phases during the stretching. The shear bands are regarded as Mode-I cracks, and whereby the strain-softening stage in the stress-strain curves can be well reflected. Furthermore, multi-particle representative volume element based FEM modelling was employed to clearly explain the failure mechanisms in BMGCs as a necessary complement. The predictions are in reasonable agreement with the experimental results. The presented analytical method will shed some light on optimizing the microstructures, and is of convenience in the engineering applications.


Sign in / Sign up

Export Citation Format

Share Document