electron imaging
Recently Published Documents


TOTAL DOCUMENTS

676
(FIVE YEARS 70)

H-INDEX

43
(FIVE YEARS 6)

2022 ◽  
Vol 34 (1) ◽  
pp. 7-18
Author(s):  
Gerhard Franz ◽  
Masafumi Sudo ◽  
Vladimir Khomenko

Abstract. We determined 40Ar/39Ar ages of buddingtonite, occurring together with muscovite, with the laser-ablation method. This is the first attempt to date the NH4-feldspar buddingtonite, which is typical for sedimentary–diagenetic environments of sediments, rich in organic matter, or in hydrothermal environments, associated with volcanic geyser systems. The sample is a hydrothermal breccia, coming from the Paleoproterozoic pegmatite field of the Korosten Plutonic Complex, Volyn, Ukraine. A detailed characterization by optical methods, electron microprobe analyses, backscattered electron imaging, and IR analyses showed that the buddingtonite consists of euhedral-appearing platy crystals of tens of micrometers wide, 100 or more micrometers in length, which consist of fine-grained fibers of ≤ 1 µm thickness. The crystals are sector and growth zoned in terms of K–NH4–H3O content. The content of K allows for an age determination with the 40Ar/39Ar method, as well as in the accompanying muscovite, intimately intergrown with the buddingtonite. The determinations on muscovite yielded an age of 1491 ± 9 Ma, interpreted as the hydrothermal event forming the breccia. However, buddingtonite apparent ages yielded a range of 563 ± 14 Ma down to 383 ± 12 Ma, which are interpreted as reset ages due to Ar loss of the fibrous buddingtonite crystals during later heating. We conclude that buddingtonite is suited for 40Ar/39Ar age determinations as a supplementary method, together with other methods and minerals; however, it requires a detailed mineralogical characterization, and the ages will likely represent minimum ages.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7743
Author(s):  
Sijia Liu ◽  
Long Yu ◽  
Hao Han ◽  
Feng Pan ◽  
Kai Wu ◽  
...  

This study evaluates the effect of vehicle–bridge coupled vibration on the mechanical properties of fiber-reinforced magnesium phosphate cement (FR-MPC) composites and the bonding properties of repaired systems. By means of compressive and flexural bond strengths, fiber pullout, mercury intrusion porosimeter (MIP) and backscattered electron imaging (BSE) analysis, an enhanced insight was gained into the evolution of FR-MPC performance before and after vibration. Experimental results showed that the compressive strength and flexural strength of FR-MPC was increased when it was subjected to vibration. However, the effects of vibration on the flexural strength of plain magnesium phosphate cement (MPC) mortars was insignificant. The increased flexural strength of FR-MPC after vibration could be due to the high average bond strength and pull-out energy between the micro-steel fiber and the MPC matrix. Moreover, BSE analysis revealed that the interface structure between FR-MPC and an ordinary Portland cement (OPC) substrate was more compacted after vibration, which could possibly be responsible for the better bonding properties of FR-MPC. These findings are beneficial for construction project applications of FR-MPC in bridge repairing and widening.


2021 ◽  
Author(s):  
◽  
Karsten Lorentz

<p>Dirt. It is more important than one might think. Soil, along with its bedrock-derived components, provides a nexus in the earth system for energy, nutrient, and atmospheric control; yet it is a finite resource. Soils are consumed, transported, and replenished by natural and anthropogenic forces. Weathering—both physical and chemical—is the key process breaking down and regenerating the ions and mineral constituents of soils, facilitating the pathways from solid bedrock to soil to the rest of the global ecosystem. Yet our understanding of weathering is incomplete and the available methods to investigate these processes are limited. Here, the fundamental processes of weathering are questioned by studying them at their origins, the rock surface. New techniques were developed in pursuit of quantifying weathering at small scales in-situ, to obtain the highest resolution measurements possible. These were carried out in the proglacial regions of two New Zealand glaciers, Brewster Glacier and Franz Josef Glacier.  Proglacial bedrock environments provided a clean-slate model from which to measure incipient weathering at increasing exposure ages. To mitigate error, a holistic approach encompassing weathering signals from multiple angles was taken. Spatial characterisation was completed through the capture of structure-from-motion photogrammetry (SFM) at multiple scales of observation. The resultant three dimensional surface models had an average error of 1.06x10-1 mm. The models were characterised for weathering using roughness as a novel multi-point analysis of surface features, through two separate novel methods utilising global polynomial interpolation filtering and continuous wavelet transform analysis. Physical samples were collected from the field for cosmogenic radionuclide surface exposure age dating. Compositional analysis was performed through X-ray fluorescence, as well as electron microprobe analysis (EPMA). Nano-scale structural and compositional trends were investigated through optical analysis of backscatter electron imaging and secondary electron imaging.  Non-directional roughness and volumetric analysis patterns present compelling information to support negligible weathering occurring on bedrock surfaces in proglacial environments. Lithologic variation was identified as a strong influence on the results. Compositional analysis demonstrated insignificant levels of chemical alteration between sites, corroborating the spatial modelling results. The lack of surficial weathering in highly productive weathering environments necessitates the role of additional weathering factors. Deep subsurface weathering was investigated and presents the strongest case as a major contributor to chemical denudation. Validating the presence of deep weathering in many environments critically alters the knowledge required to evaluate and predict patterns of landscape evolution. By establishing a better understanding of how bedrock weathers in-situ, the groundwork is laid for making more accurate and educated forecasts on how the earth system will respond to changes in the future.</p>


2021 ◽  
Author(s):  
◽  
Karsten Lorentz

<p>Dirt. It is more important than one might think. Soil, along with its bedrock-derived components, provides a nexus in the earth system for energy, nutrient, and atmospheric control; yet it is a finite resource. Soils are consumed, transported, and replenished by natural and anthropogenic forces. Weathering—both physical and chemical—is the key process breaking down and regenerating the ions and mineral constituents of soils, facilitating the pathways from solid bedrock to soil to the rest of the global ecosystem. Yet our understanding of weathering is incomplete and the available methods to investigate these processes are limited. Here, the fundamental processes of weathering are questioned by studying them at their origins, the rock surface. New techniques were developed in pursuit of quantifying weathering at small scales in-situ, to obtain the highest resolution measurements possible. These were carried out in the proglacial regions of two New Zealand glaciers, Brewster Glacier and Franz Josef Glacier.  Proglacial bedrock environments provided a clean-slate model from which to measure incipient weathering at increasing exposure ages. To mitigate error, a holistic approach encompassing weathering signals from multiple angles was taken. Spatial characterisation was completed through the capture of structure-from-motion photogrammetry (SFM) at multiple scales of observation. The resultant three dimensional surface models had an average error of 1.06x10-1 mm. The models were characterised for weathering using roughness as a novel multi-point analysis of surface features, through two separate novel methods utilising global polynomial interpolation filtering and continuous wavelet transform analysis. Physical samples were collected from the field for cosmogenic radionuclide surface exposure age dating. Compositional analysis was performed through X-ray fluorescence, as well as electron microprobe analysis (EPMA). Nano-scale structural and compositional trends were investigated through optical analysis of backscatter electron imaging and secondary electron imaging.  Non-directional roughness and volumetric analysis patterns present compelling information to support negligible weathering occurring on bedrock surfaces in proglacial environments. Lithologic variation was identified as a strong influence on the results. Compositional analysis demonstrated insignificant levels of chemical alteration between sites, corroborating the spatial modelling results. The lack of surficial weathering in highly productive weathering environments necessitates the role of additional weathering factors. Deep subsurface weathering was investigated and presents the strongest case as a major contributor to chemical denudation. Validating the presence of deep weathering in many environments critically alters the knowledge required to evaluate and predict patterns of landscape evolution. By establishing a better understanding of how bedrock weathers in-situ, the groundwork is laid for making more accurate and educated forecasts on how the earth system will respond to changes in the future.</p>


Author(s):  
Shuo Zhang ◽  
Vivek Garg ◽  
Gediminas Gervinskas ◽  
Ross K.W. Marceau ◽  
Emily Chen ◽  
...  

2021 ◽  
Author(s):  
Matija Herceg ◽  
John L Jorgensen ◽  
Jose M.G. Merayo ◽  
Troelz Denver ◽  
Peter S Jorgensen ◽  
...  

MRS Bulletin ◽  
2021 ◽  
Author(s):  
Tyler R. Harvey ◽  
Nara Rubiano da Silva ◽  
John H. Gaida ◽  
Marcel Möller ◽  
Armin Feist ◽  
...  

Abstract The spatial features of ultrafast changes in magnetic textures carry detailed information on microscopic couplings and energy transport mechanisms. Electrons excel in imaging such picosecond or shorter processes at nanometer length scales. We review the range of physical interactions that produce ultrafast magnetic contrast with electrons, and specifically highlight the recent emergence of ultrafast Lorentz transmission electron microscopy. From the fundamental processes involved in demagnetization at extremely short timescales to skyrmion-based devices, we show that ultrafast electron imaging will be a vital tool in solving pressing problems in magnetism and magnetic materials where nanoscale inhomogeneity, microscopic field measurement, non-equilibrium behavior or dynamics are involved. Graphic abstract


Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 395
Author(s):  
Oliver Campbell ◽  
Tom Blenkinsop ◽  
Oscar Gilbert ◽  
Lisa Mol

The shift of armed conflicts to more urbanised environments has increased the risk to cultural heritage sites. Small arms impacts are ubiquitous in these circumstances, yet the effects and mechanisms of damage caused are not well known. A sandstone target was shot under controlled conditions to investigate surface and subsurface damage. A 3D model of the damaged block, created by structure from motion photogrammetry, shows that internal fracturing was at least as extensive as the visible surface fractures. Backscatter electron imaging of the damaged surface shows a shift from intragranular fracturing and grain size reduction at < 5 mm from the impact point to primarily circumgranular fracturing and grain ‘plucking’ at 20 mm from the impact point. Internal fracture intensity decreased with distance from the centre of the crater. Volumes around the impact point are therefore at greater risk of subsequent weathering deterioration, but significant damage extends to the periphery of the target, rendering whole blocks vulnerable. The surface crater, despite being one of the most conspicuous aspects of conflict damage, has many times less area than internal and surface fractures.


2021 ◽  
Author(s):  
Zhidong Xie ◽  
Thomas G. Sharp ◽  
Shuhao Zuo ◽  
Xiaochun Li

Abstract Here we report the natural occurrence of the ringwoodite rims around olivine cores in shock-induced melt veins of the Antarctic chondrite GRV 022321. Electron microprobe analysis (EMPA), Raman spectroscopy, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) were used to examine the sample to better elucidate the mechanisms of transformation of the olivine to ringwoodite and Fe-Mg partitioning in olivine under the shock. The GRV 022321 is an L6 chondrite with a network of black veins enclosing abundant olivine host-rock fragments. Some of the enclosed fragments ranging from 5 µm to 100 µm in size have bright rims up to 20 µm wide, and a dark core under reflected light and backscatter electron imaging. Raman spectroscopy reveals that rims are made of ringwoodite, and cores are predominantly olivine. EMPA data show the ringwoodites in rims are richer in Fe (Fa46) than the olivine cores (Fa10-Fa23). The olivine cores have variable contrast in BSE images with the heterogeneities in fayalite content (Fa10 to Fa23) and a branching network of low-Fa olivine. FIB-TEM observations reveal that the ringwoodite rims are polycrystalline with crystallite sizes from 200 nm to 800 nm, while the olivine cores are also polycrystalline, but with smaller crystallites from 100 nm to 200 nm. Based on observation, we conclude that the original Fa23 olivine transformed to Fa10 olivine and Fa46 ringwoodite by a solid-state diffusion-controlled growth mechanism during shock, and the branching network of low-Fa olivine acted as long-range(up to 10µm)high-diffusion pathways for grain-boundary Fe-Mg interdiffusion through highly deformed nano-crystalline olivine to accommodate the diffusion-controlled growth of ringwoodite.


Sign in / Sign up

Export Citation Format

Share Document