Seismic Fragility Analysis of Highway Bridges in India Considering Evolution of Seismic Code Provisions—A Case Study

Author(s):  
Shivang Shekhar ◽  
Jayadipta Ghosh
Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 238
Author(s):  
Phuong Hoa Hoang ◽  
Hoang Nam Phan ◽  
Duy Thao Nguyen ◽  
Fabrizio Paolacci

Uncertainty quantification is an important issue in the seismic fragility analysis of bridge type structures. However, the influence of different sources of uncertainty on the seismic fragility of the system is commonly overlooked due to the costly re-evaluation of numerical model simulations. This paper aims to present a framework for the seismic fragility analysis of reinforced concrete highway bridges, where a data-driven metamodel is developed to approximate the structural response to structural and ground motion uncertainties. The proposed framework to generate fragility curves shows its efficiency while using a few finite element simulations and accounting for various modeling uncertainties influencing the bridge seismic fragility. In this respect, a class of single-bent bridges available in the literature is taken as a case study, whose three-dimensional finite element model is established by the OpenSees software framework. Twenty near-source records from different sources are selected and the Latin hypercube method is applied for generating the random samples of modeling and ground motion parameters. The Kriging metamodel is then driven on the structural response obtained from nonlinear time history analyses. Component fragility curves of the reinforced concrete pier column are derived for different damage states using the Kriging metamodel whose parameters are established considering different modeling parameters generated by Monte Carlo simulations. The results demonstrate the efficiency of the proposed framework in interpolating the structural response and deriving the fragility curve of the case study with any input conditions of the random variables.


2020 ◽  
pp. 136943322097728
Author(s):  
Haoran Yu ◽  
Weibin Li

Reduced web section (RWS) connections and welded flange plate (WFP) connections can both effectively improve the seismic performance of a structure by moving plastic hinges to a predetermined location away from the column face. In this paper, two kinds of steel frames—with RWS connections and WFP connections—as well as different frames with welded unreinforced flange connections were studied through seismic fragility analysis. The numerical simulation was conducted by using multiscale FE modelling. Based on the incremental dynamic analysis and pushover analysis methods, probabilistic seismic demand analysis and seismic capability analysis were carried out, respectively. Finally, combined with the above analysis results, probabilistic seismic fragility analysis was conducted on the frame models. The results showed that the RWS connection and WFP connection (without double plates) have little influence on reducing the maximum inter-storey drift ratio under earthquake action. RWS connections slightly reduce the seismic capability in non-collapse stages and improve the seismic collapse resistance of a structure, which exhibits good structural ductility. WFP connections can comprehensively improve the seismic capability of a structure, but the seismic collapse resistance is worse than that of RWS connections when the structure has a large number of storeys. The frame with WFP connections has a lower failure probability at every seismic limit state, while the frame with RWS connections sacrifices some of its structural safety in non-collapse stages to reduce the collapse probability.


Author(s):  
Giuseppe Abbiati ◽  
Marco Broccardo ◽  
Imad Abdallah ◽  
Stefano Marelli ◽  
Fabrizio Paolacci

Energies ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 1037 ◽  
Author(s):  
Renjie Mo ◽  
Haigui Kang ◽  
Miao Li ◽  
Xuanlie Zhao

Sign in / Sign up

Export Citation Format

Share Document