Seismic fragility analysis of transmission towers considering effects of soil-structure interaction and depth-varying ground motion inputs

Author(s):  
Haiyang Pan ◽  
Chao Li ◽  
Li Tian
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Panpan Zhai ◽  
Peng Zhao ◽  
Yang Lu ◽  
Chenying Ye ◽  
Feng Xiong

Most conventional seismic fragility analyses of RC buildings usually ignore or greatly simplify the soil-structure interaction (SSI), and the maximum interstory drift ratio (MIDR) is often adopted to establish seismic fragility curves. In this work, an eight-story RC building was designed to study the influence of the SSI on the seismic fragility of RC buildings. Three double-parameter damage models (DPDMs) were considered for the fragility assessment: the Park–Ang model, the Niu model, and the Lu–Wang model. Results show that considering SSI induces a higher fragility than that of the fixed model and that employing the DPDMs for the fragility analysis provides more reasonable results than those evaluated using the MIDR damage index.


1978 ◽  
Vol 68 (3) ◽  
pp. 823-843
Author(s):  
G. N. Bycroft

abstract Rocking and vertical and horizontal translations of typical “free-field” seismometer installations lead to magnification of the ground motion record. This magnification can be significant for the higher frequency components if the terrain has a relatively low shear-wave velocity. Seismometers placed on foundations which cover a significant part of a wavelength of a horizontally incident wave, experience an attenuated ground motion. A method of correcting the seismograms for these effects is given. Compliance functions for a rigid sphere in a full elastic space are derived and are used to show that, in practical cases, down-hole seismometer installations are not significantly affected by interaction. These compliance functions should be useful in discussing the soil structure interaction of structures erected on bulbous piles. They may be also used as the basis of a method of determining elastic constants of ground at depth, in situ, and at different frequencies.


2012 ◽  
Vol 256-259 ◽  
pp. 1492-1495
Author(s):  
Xiao Yu Yan

To investigate the seismic response of long-span rigid frame bridges with high-pier, the shaking table test of a 1/10 scaled rigid frame bridge model is introduced in this paper. Details about test equipment, model design, test arrangement, input ground motion waves and test principle are provided. The response of bridge model under the seismic excitation included the uniform excitation and the multi-support excitation is observed. The influence of the soil-structure interaction on the bridge is considered through the real-time dynamic hybrid testing method. The impact effect for different ground motion input during the test is discussed. The influence of multi-support excitation, soil-structure interaction and impact effect on structural seismic responses are studied based on the test results. The isolation effectiveness and the damping effect are discussed as well.


2021 ◽  
Vol 48 (1) ◽  
pp. 39-51 ◽  
Author(s):  
A.H.M. Muntasir Billah ◽  
M. Shahria Alam

Fragility curve is an effective tool for identifying the potential seismic risk and consequences during and after an earthquake. Recent seismic events have shown that bridges are highly sensitive and vulnerable during earthquakes. There has been limited research to evaluate the seismic vulnerability of the existing bridges in British Columbia (BC), which could help in the decision-making process for seismic upgrade. This study focuses on developing seismic fragility curves for typical multi-span continuous concrete girder bridges in BC. Ground motions compatible with the seismic hazard were used as input excitations for vulnerability assessment. Uncertainties in material and geometric properties were considered to represent the bridges with similar structural characteristics and construction period. The fragility of the bridge is largely attributable to the fragilities of the columns, and to a lesser extent, the abutment and bearing components. The results of this study show that, although not very significant, the soil–structure interaction has some effect on the component fragility where this effect is not very significant at the bridge system level.


Sign in / Sign up

Export Citation Format

Share Document