Finite-Time Attitude Control of Multiple Rigid Spacecraft Using Terminal Sliding Mode

Author(s):  
Yuanqing Xia ◽  
Jinhui Zhang ◽  
Kunfeng Lu ◽  
Ning Zhou
2014 ◽  
Vol 25 (12) ◽  
pp. 1862-1876 ◽  
Author(s):  
Ning Zhou ◽  
Yuanqing Xia ◽  
Meiling Wang ◽  
Mengyin Fu

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zijun Gao ◽  
Jin Wang ◽  
Yaping Tian

This paper investigates the adaptive output feedback attitude control of a quadrotor. First, a nonsingular terminal sliding-mode variable and auxiliary variable are introduced into a closed-loop structure. Meanwhile, a fuzzy logic system is incorporated into an adaptive algorithm to compensate for the adverse influence caused by lumped disturbances including system uncertainty and external disturbances on the attitude adjustment performance of a quadrotor. Then, a novel finite-time output feedback controller equipped with the saturation suppression algorithm is designed. Rigorous proof shows that the design control strategy ensures the closed-loop system stability and guarantees the attitude of the spacecraft to track desired command signals in finite time. Simulation results are presented to illustrate the performance of the proposed control scheme.


Author(s):  
Qun Zong ◽  
Xiuyun Zhang ◽  
Shikai Shao ◽  
Bailing Tian ◽  
Wenjing Liu

In this paper, finite-time fault-tolerant attitude tracking control is investigated for rigid spacecraft system with external disturbances, inertia uncertainties and actuator faults. A novel finite-time disturbance observer combined with a nonsingular terminal sliding mode controller is developed. Using an equivalent output error injection approach, a finite-time disturbance observer with simple structure is firstly designed to estimate lumped uncertainty. Then, to remove the requirement of prior knowledge about lumped uncertainty and reduce chattering, an adaptive finite-time disturbance observer is further proposed, and the estimations converge to the neighborhood of the true values. Based on the designed observer, a unified finite-time attitude controller is obtained automatically. Finally, both additive and multiplicative faults are considered for simulations and the results illustrate the great fault-tolerant capability of the proposed scheme.


Author(s):  
Zeng Wang ◽  
Yuxin Su ◽  
Liyin Zhang

This paper addresses the finite time attitude tracking for rigid spacecraft with inertia uncertainties and external disturbances. First, a new nonsingular terminal sliding mode (NTSM) surface is proposed for singularity elimination. Second, a robust controller based on NTSM is designed to solve the attitude tracking problem. It is proved that the new NTSM can converge to zero within finite time, and the attitude tracking errors converge to an arbitrary small bound centered on equilibrium point within finite time and then go to equilibrium point asymptotically. The appealing features of the proposed control are fast convergence, high precision, strong robustness, and easy implementation. Simulations verify the effectiveness of the proposed approach.


2021 ◽  
Author(s):  
Jie Wang ◽  
YuShang Hu ◽  
Wenqiang Ji

Abstract This paper investigates the problem of the finite-time attitude tracking control for rigid spacecrafts with external disturbances and inertia uncertainties. Firstly, a finite-time approach is designed to achieve attitude tracking control of the rigid spacecraft in absence of disturbances and inertia uncertainties and the time of convergence can be chosen in advance. Then, the integral sliding mode combined with barrier function-based adaptive laws is proposed to reject the disturbances and inertia uncertainties, and at the same time, a barrier function-based adaptive method can also ensure the solutions of the rigid spacecraft system belonging to a stipulated vicinity of the intended variables starting from the initial moment and the uncertainties' upper bound is not overestimated. Finally, numerical simulation is provided to illustrate the efficiency of the proposed control protocol.


2021 ◽  
Author(s):  
Kang Liu ◽  
Rujing Wang

Abstract This study considers the problem of finitetime attitude control for quadrotor unmanned aerial vehicles (UAVs) subject to parametric uncertainties, external disturbances, input saturation, and actuator faults. Under the strong approximation of radial basis function neural networks (RBFNN), an adaptive finitetime NN observer is first presented to obtain the accurate information of unavailable angular velocity. More importantly, an adaptive mechanism to adjust the output gain of the fuzzy logic system (FLS) is developed to avoid the selection of larger control gains, and can even work well without the prior information on the bound of the lumped disturbance. Based on the nonsingular fast terminal sliding mode manifold, a novel switching control law is designed by incorporating the adaptive FLS and fast continuous controller in order to remove the undesired chattering phenomenon and solve the negative effects induced from the parametric uncertainty, external disturbance, and actuator fault. To deal with the input saturation, an auxiliary system is constructed. The rigorous theoretical analysis is given to prove that all the signals in the closed-loop system are uniformly bounded, and tracking errors converge into bounded neighborhoods near the origin in finite time. Moreover, the issue of selecting control parameters is analyzed in detail. Last but not least, the comparative simulation results show the validity and feasibility of the proposed control framework.


Sign in / Sign up

Export Citation Format

Share Document