Numerical Simulation of the Coal Spontaneous Combustion Dangerous Area in Multi-seam Longwall Gobs

Author(s):  
Zhi-jin Yu ◽  
Hu Wen ◽  
Chao Wang
2012 ◽  
Vol 524-527 ◽  
pp. 317-320
Author(s):  
Bo Tan ◽  
Yuan Gang Jiang ◽  
Chao Nan He ◽  
Jing Chang ◽  
Ya Qi Luo

This paper aimed at fire control in thick seam large-scale top-carving region. On the basis of coal and oxygen compounding theory, theoretical analysis, numerical simulation and experiment are combined, and a coal spontaneous combustion process model is built according to fluid mechanics and control theory. By studying and testing on top-carving coal spontaneous combustion process, conclusion is drawn that spontaneous combustion area is the largest in partly-closed region, followed by unclosed region. A totally closed baffle leads to the smallest spontaneous combustion area and the smallest possibility of fire. With local materials in a certain condition, new, cheap backfilling materials are developed. Thus provide theoretical basis for study on the forecasting and prevention of thick seam large-scale top-carving coal spontaneous combustion.


Fuel ◽  
2020 ◽  
Vol 271 ◽  
pp. 117625 ◽  
Author(s):  
Yin Liu ◽  
Hu Wen ◽  
Jun Guo ◽  
Yongfei Jin ◽  
Gaoming Wei ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xiaoqiang Zhang ◽  
Bolin Hu ◽  
Jiaxing Zou ◽  
Chuandong Liu ◽  
Yuanfan Ji

The overburden rock mining fissures are the main cause of coal spontaneous combustion, gas pooling, and mine water inrush caused by goaf air leakage. Rapid and accurate determination of the development and evolution law of mining fissures have great significance for the application of coal spontaneous combustion prevention and control, gas disaster prevention and control, and water damage prevention and control measures. In this paper, a preliminary judgment of the development height of the water-conducting fracture zone is made based on the theoretical analysis, and the physical model size of the numerical simulation is determined according to its judgment result. It is judged that the development height of its water-conducting fracture zone is between 49 and 64.2 m, which is in line with the actual results. Based on this, a three-dimensional solid model was established in PFC (Particle Flow Code) software to analyze the fissure development pattern of the overburden rock and the development height of the water-conducting fracture zone when the main key stratum of the rock seam is in different positions by simulating the excavation process of the coal seam. The results show that when the main key stratum is located in the “original crack belt boundary,” the development of water-conducting fracture zone is significantly inhibited; when the main key stratum is located in the “original caving zone,” the water-conducting fracture zone is fully developed, and the crack belt finally develops to the top of the model. In order to verify the accuracy of the numerical simulation, similar material simulation experiments were performed under the same scheme. The results are consistent with the numerical simulation conclusions, effectively verifying the accuracy of the numerical simulation. Finally, the extraction of porosity of the goaf was carried out based on numerical simulation, and the permeability zoning of the goaf was performed; the results show that the development of the water-conducting fracture zone has a significant influence on the permeability of the mining area, and the more fully developed the fissure is, the greater is its permeability. In this paper, the fissure development law in the goaf under different key stratums is explored by various research stratums, and the results show a good consistency, which provides a scientific basis for the prevention and control of disasters such as water inrush and coal and gas outburst in mines, and provides theoretical guidance for safe mining.


2016 ◽  
Vol 9 (1) ◽  
pp. 47-54
Author(s):  
Jing Shen ◽  
Mingran Chang

One of the main reasons for coal mine fire is spontaneous combustion of residual coal in gob. As the difference of compaction degree of coal and rock, the underground gob can be considered as a porous medium and divided into “three zones” in accordance with the criteria. The “three zones” are “heat dissipation zone”, “oxidation zone” and “choking zone”, respectively. Temperature programming experiments are taken and numerical simulation with obtained experimental data is utilized to analyze the distribution of “three zones” in this paper. Different width and depth of “oxidation zone” are obtained when the inlet air velocity is changed. As the nitrogen injection has inhibition effect on spontaneous combustion of residual coal in gob, nitrogen is injected into the gob. The widths of “oxidation zone” are compared before and after nitrogen injection. And ultimately the optimum location and volume of nitrogen injection are found out.


Sign in / Sign up

Export Citation Format

Share Document