On Love Wave Frequency Under the Influence of Linearly Varying Shear Moduli, Initial Stress, and Density of Orthotropic Half-Space

Author(s):  
Sumit Kumar Vishwakarma ◽  
Tapas Ranjan Panigrahi ◽  
Rupinderjit Kaur
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Pramod Kumar Vaishnav ◽  
Santimoy Kundu ◽  
Shishir Gupta ◽  
Anup Saha

Propagation of Love-type wave in an initially stressed porous medium over a semi-infinite orthotropic medium with the irregular interface has been studied. The method of separation of variables has been adopted to get the dispersion relation of Love-type wave. The irregularity is assumed to be rectangular at the interface of the layer and half-space. Finally, the dispersion relation of Love wave has been obtained in classical form. The presence of porosity, irregularity, and initial stress in the dispersion equation approves the significant effect of these parameters in the propagation of Love-type waves in porous medium bounded below by an orthotropic half-space. The scientific effect of porosity, irregularity, and initial stress in the phase velocity of the Love-type wave propagation has been studied and shown graphically.


2008 ◽  
Vol 33-37 ◽  
pp. 669-674 ◽  
Author(s):  
Zheng Hua Qian ◽  
Feng Jin ◽  
Kikuo Kishimoto

The propagation behavior of Love waves in a functionally graded material layered half-space with initial stress is taken into account. The Wentzel-Kramers-Brillouin (WKB) asymptotic technique is adopted for the theoretical derivations. The analytical solutions are obtained for the dispersion relations and the distributions of mechanical displacement and stress along thickness direction in the layered structure. Firstly, these solutions are used to study effects of the initial stress on the dispersion relations and phase velocities, then influences of the initial stress on the distributions of mechanical displacement and shear stresses along thickness direction are discussed in detail. Numerical results obtained indicate that the phase velocity of Love wave increases with the increase of the magnitude of the initial tensile stress, while decreases with the increase of the magnitude of the initial compression stress. The effects on the dispersion relations of the Love wave propagation are negligible as the magnitudes of the initial stress are less than 100MPa. Some other results are shown for distributions of field quantities along thickness direction. The results obtained are not only meaningful for the design of functionally graded structures with high performance but also effective for the evaluation of residual stress distribution in the layered structures.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3243
Author(s):  
Ambreen Afsar Khan ◽  
Anum Dilshad ◽  
Mohammad Rahimi-Gorji ◽  
Mohammad Mahtab Alam

Considering the propagation of an SH wave at a corrugated interface between a monoclinic layer and heterogeneous half-space in the presence of initial stress. The inhomogeneity in the half-space is the causation of an exponential function of depth. Whittaker’s function is employed to find the half-space solution. The dispersion relation has been established in closed form. The special cases are discussed, and the classical Love wave equation is one of the special cases. The influence of nonhomogeneity parameter, coupling parameter, and depth of irregularity on the phase velocity was studied.


2013 ◽  
Vol 325-326 ◽  
pp. 252-255
Author(s):  
Li Gang Zhang ◽  
Hong Zhu ◽  
Hong Biao Xie ◽  
Jian Wang

This work addresses the dispersion of Love wave in an isotropic homogeneous elastic half-space covered with a functionally graded layer. First, the general dispersion equations are given. Then, the approximation analytical solutions of displacement, stress and the general dispersion relations of Love wave in both media are derived by the WKBJ approximation method. The solutions are checked against numerical calculations taking an example of functionally graded layer with exponentially varying shear modulus and density along the thickness direction. The dispersion curves obtained show that a cut-off frequency arises in the lowest order vibration model.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 285-299
Author(s):  
Jamel Bouslimi ◽  
Sayed Abo-Dahab ◽  
Khaled Lotfy ◽  
Sayed Abdel-Khalek ◽  
Eied Khalil ◽  
...  

In this paper is investigating the theory of generalized thermoelasticity under two temperature is used to solve boundary value problems of 2-D half-space its bound?ary with different types of heating under gravity effect. The governing equations are solved using new mathematical methods under the context of Lord-Shulman, Green-Naghdi theory of type III (G-N III) and the three-phase-lag model to inves?tigate the surface waves in an isotropic elastic medium subjected to gravity field, magnetic field, and initial stress. The general solution obtained is applied to a spe?cific problem of a half-space and the interaction with each other under the influence of gravity. The physical domain by using the harmonic vibrations is used to obtain the exact expressions for the Waves velocity and attenuation coefficients for Stoneley waves, Love waves, and Rayleigh waves. Comparisons are made with the results between the three theories. Numerical work is also performed for a suitable material with the aim of illustrating the results. The results obtained are calculated numerical?ly and presented graphically with some comparisons in the absence and the presence the influence of gravity, initial stress and magnetic field. It clears that the results ob?tained agree with the physical practical results and agree with the previous results if the gravity, two temperature, and initial stress neglect as special case from this study.


Sign in / Sign up

Export Citation Format

Share Document