Gaussian Cauchy Differential Evolution for Global Optimization

Author(s):  
Qingke Zhang ◽  
Huaxiang Zhang ◽  
Bo Yang ◽  
Yupeng Hu
Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1661
Author(s):  
Mohamed Abdel-Basset ◽  
Reda Mohamed ◽  
Safaa Saber ◽  
S. S. Askar ◽  
Mohamed Abouhawwash

In this paper, a modified flower pollination algorithm (MFPA) is proposed to improve the performance of the classical algorithm and to tackle the nonlinear equation systems widely used in engineering and science fields. In addition, the differential evolution (DE) is integrated with MFPA to strengthen its exploration operator in a new variant called HFPA. Those two algorithms were assessed using 23 well-known mathematical unimodal and multimodal test functions and 27 well-known nonlinear equation systems, and the obtained outcomes were extensively compared with those of eight well-known metaheuristic algorithms under various statistical analyses and the convergence curve. The experimental findings show that both MFPA and HFPA are competitive together and, compared to the others, they could be superior and competitive for most test cases.


2018 ◽  
Vol 8 (10) ◽  
pp. 1945 ◽  
Author(s):  
Tarik Eltaeib ◽  
Ausif Mahmood

Differential evolution (DE) has been extensively used in optimization studies since its development in 1995 because of its reputation as an effective global optimizer. DE is a population-based metaheuristic technique that develops numerical vectors to solve optimization problems. DE strategies have a significant impact on DE performance and play a vital role in achieving stochastic global optimization. However, DE is highly dependent on the control parameters involved. In practice, the fine-tuning of these parameters is not always easy. Here, we discuss the improvements and developments that have been made to DE algorithms. In particular, we present a state-of-the-art survey of the literature on DE and its recent advances, such as the development of adaptive, self-adaptive and hybrid techniques.


Sign in / Sign up

Export Citation Format

Share Document