Temperature and Traverse Force Analysis During Underwater Friction Stir Welding

Author(s):  
Mohd Atif Wahid ◽  
Nidhi Sharma ◽  
Pankul Goel ◽  
Zahid A. Khan ◽  
Arshad N. Siddiquee
Author(s):  
Srinivasa Rao Pedapati ◽  
Dhanis Paramaguru ◽  
Mokhtar Awang

As compared to normal Friction Stir Welding (FSW) joints, the Underwater Friction Stir Welding (UFSW) has been reported to be obtainable in consideration of enhancement in mechanical properties. A 5052-Aluminum Alloy welded joints using UFSW method with plate thickness of 6 mm were investigated, in turn to interpret the fundamental justification for enhancement in mechanical properties of material through UFSW. Differences in microstructural features and mechanical properties of the joints were examined and discussed in detail. The results indicate that underwater FSW has reported lower hardness value in the HAZ and higher hardness value in the intermediate of stir zone (SZ). The average hardness value of underwater FSW increases about 53% greater than its base material (BM), while 21% greater than the normal FSW. The maximum micro-hardness value was three times greater than its base material (BM), and the mechanical properties of underwater FSW joint is increased compared to the normal FSW joint. Besides, the evaluated void-area fraction division in the SZ of underwater FSW joint was reduced and about one-third of the base material (BM). The approximately estimated average size of the voids in SZ of underwater FSW also was reduced to as low as 0.00073 mm2, when compared to normal FSW and BM with approximately estimated average voids size of 0.0024 mm2 and 0.0039 mm2, simultaneously.


2016 ◽  
Vol 102 ◽  
pp. 91-99 ◽  
Author(s):  
Qingzhao Wang ◽  
Zhixia Zhao ◽  
Yong Zhao ◽  
Keng Yan ◽  
Chuan Liu ◽  
...  

Author(s):  
Mohd Atif Wahid ◽  
Zahid A Khan ◽  
Arshad Noor Siddiquee ◽  
Rohit Shandley ◽  
Nidhi Sharma

In friction stir welding of heat treatable aluminum alloys, the thermal cycles developed during the joining process result in softening of the joints which adversely affect their mechanical properties. Underwater friction stir welding can be a process of choice to overcome this problem due to low peak temperature and short dwell time involved during the process. Consequently, this article presents a study pertaining to the underwater friction stir welding of aluminum alloy 6082-T6 with an aim to develop a mathematical model to optimize the underwater friction stir welding process parameters for obtaining maximum tensile strength. The results of the study reveal that the tool shoulder diameter (d), tool rotational speed (ω), welding speed (v), and second-order term of rotational speed, that is, ω2, significantly affect the tensile strength of the joint. The maximum tensile strength of 241 MPa which is indeed 79% of the base metal strength and 10.7% higher than that of conventional (air) friction stir welding joint was achieved at an optimal setting of the underwater friction stir welding parameters, that is, tool rotational speed of 900 r/min, the welding speed of 80 mm/min, and a tool shoulder of 17 mm. The article also presents the results of temperature variation, the macrostructural and microstructural investigations, microhardness, and fractography of the joint obtained at the optimal setting for underwater friction stir welded (UFSWed) joint.


Author(s):  
Solaleh Salimi ◽  
Pouya Bahemmat ◽  
Mohammad Haghpanahi

Predicting residual stresses arising from the thermal and mechanical loading history during engineering processes including welding would be a viable tool to reach the optimum process parameters. In the present article, an elasto-thermo-visco-plastic model has been employed to estimate the residual stress caused by the underwater friction stir welding, which are resulted by large thermo-mechanical deformations on one hand and rapid cooling arising from the enormous non-uniform boiling heat convention of water on the other hand. Finally, the numerical results are compared with experimental data acquired by the ultrasonic method to evaluate the accuracy of the simulation process. Regarding the low temperature during underwater friction stir welding, the employed constitutive equations result in acceptable residual stress fields, while for in-air case, the amount of error increases significantly due to experience of high temperatures and intensification in hardening precipitation phenomena.


Author(s):  
Mahmoud Abbasi ◽  
Amin Abdollahzadeh ◽  
Behrouz Bagheri ◽  
Ahmad Ostovari Moghaddam ◽  
Farzaneh Sharifi ◽  
...  

Various methods have been proposed to modify the friction stir welding. Friction stir vibration welding and underwater friction stir welding are two variants of this technique. In friction stir vibration welding, the adjoining workpieces are vibrated normal to the joint line while friction stir welding is carried out, while in underwater friction stir welding the friction stir welding process is performed underwater. The effects of these modified versions of friction stir welding on the microstructure and mechanical characteristics of AA6061-T6 aluminum alloy welded joints are analyzed and compared with the joints fabricated by conventional friction stir welding. The results indicate that grain size decreases from about 57 μm for friction stir welding to around 34 μm for friction stir vibration welding and about 23 μm for underwater friction stir welding. The results also confirm the evolution of Mg2Si precipitates during all processes. Friction stir vibration welding and underwater friction stir welding processes can effectively decrease the size and interparticle distance of precipitates. The strength and ductility of underwater friction stir welding and friction stir vibration welding processed samples are higher than those of the friction stir welding processed sample, and the highest strength and ductility are obtained for underwater friction stir welding processed samples. The underwater friction stir welding and friction stir vibration welding processed samples exhibit about 25% and 10% higher tensile strength compared to the friction stir welding processed sample, respectively. The results also indicate that higher compressive residual stresses are developed as underwater friction stir welding and friction stir vibration welding are applied.


Sign in / Sign up

Export Citation Format

Share Document