The strengthening mechanism of spray forming Al-Zn-Mg-Cu alloy by underwater friction stir welding

2016 ◽  
Vol 102 ◽  
pp. 91-99 ◽  
Author(s):  
Qingzhao Wang ◽  
Zhixia Zhao ◽  
Yong Zhao ◽  
Keng Yan ◽  
Chuan Liu ◽  
...  
Author(s):  
Srinivasa Rao Pedapati ◽  
Dhanis Paramaguru ◽  
Mokhtar Awang

As compared to normal Friction Stir Welding (FSW) joints, the Underwater Friction Stir Welding (UFSW) has been reported to be obtainable in consideration of enhancement in mechanical properties. A 5052-Aluminum Alloy welded joints using UFSW method with plate thickness of 6 mm were investigated, in turn to interpret the fundamental justification for enhancement in mechanical properties of material through UFSW. Differences in microstructural features and mechanical properties of the joints were examined and discussed in detail. The results indicate that underwater FSW has reported lower hardness value in the HAZ and higher hardness value in the intermediate of stir zone (SZ). The average hardness value of underwater FSW increases about 53% greater than its base material (BM), while 21% greater than the normal FSW. The maximum micro-hardness value was three times greater than its base material (BM), and the mechanical properties of underwater FSW joint is increased compared to the normal FSW joint. Besides, the evaluated void-area fraction division in the SZ of underwater FSW joint was reduced and about one-third of the base material (BM). The approximately estimated average size of the voids in SZ of underwater FSW also was reduced to as low as 0.00073 mm2, when compared to normal FSW and BM with approximately estimated average voids size of 0.0024 mm2 and 0.0039 mm2, simultaneously.


2019 ◽  
Vol 8 (5) ◽  
pp. 3733-3740 ◽  
Author(s):  
Namrata Gangil ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Mustufa Haider Abidi ◽  
Mohammed A. El-Meligy ◽  
...  

2020 ◽  
Vol 55 (29) ◽  
pp. 14626-14641
Author(s):  
Yanying Hu ◽  
Huijie Liu ◽  
Hidetoshi Fujii ◽  
Kohsaku Ushioda ◽  
Hideki Araki ◽  
...  

Author(s):  
Mohd Atif Wahid ◽  
Zahid A Khan ◽  
Arshad Noor Siddiquee ◽  
Rohit Shandley ◽  
Nidhi Sharma

In friction stir welding of heat treatable aluminum alloys, the thermal cycles developed during the joining process result in softening of the joints which adversely affect their mechanical properties. Underwater friction stir welding can be a process of choice to overcome this problem due to low peak temperature and short dwell time involved during the process. Consequently, this article presents a study pertaining to the underwater friction stir welding of aluminum alloy 6082-T6 with an aim to develop a mathematical model to optimize the underwater friction stir welding process parameters for obtaining maximum tensile strength. The results of the study reveal that the tool shoulder diameter (d), tool rotational speed (ω), welding speed (v), and second-order term of rotational speed, that is, ω2, significantly affect the tensile strength of the joint. The maximum tensile strength of 241 MPa which is indeed 79% of the base metal strength and 10.7% higher than that of conventional (air) friction stir welding joint was achieved at an optimal setting of the underwater friction stir welding parameters, that is, tool rotational speed of 900 r/min, the welding speed of 80 mm/min, and a tool shoulder of 17 mm. The article also presents the results of temperature variation, the macrostructural and microstructural investigations, microhardness, and fractography of the joint obtained at the optimal setting for underwater friction stir welded (UFSWed) joint.


2013 ◽  
Vol 872 ◽  
pp. 174-179 ◽  
Author(s):  
Olga Sizova ◽  
Galina Shlyakhova ◽  
Alexander Kolubaev ◽  
Evgeny A. Kolubaev ◽  
Sergey Grigorievich Psakhie ◽  
...  

The paper presents a metallographic study of aluminum alloy welds produced by friction stir welding. The weld structure is described for two alloys: Al-Cu and Al-Mg. It is shown that friction stir welding provides a fine-grained structure of the weld. The phase composition of the weld metal for the studied alloys is defined. Differences in the structure and distribution of second-phase particles in the weld metal are shown. The weld zone of Al-Cu alloy consists of equal size grains, with intermetallic particles located along the grain boundaries. The weld structure of Al-Mg alloy is banded, with alternating layers consisting of different size grains.


Sign in / Sign up

Export Citation Format

Share Document