Experimental Research on Corrosion Resistant Rubber Based on Supercritical CO2 Injection Process

Author(s):  
Zhongchao Lin ◽  
Jiang Sun ◽  
Lichuan Zhao ◽  
Qing He ◽  
Hao Xu
2017 ◽  
Vol 63 ◽  
pp. 150-157 ◽  
Author(s):  
Roman Pevzner ◽  
Milovan Urosevic ◽  
Dmitry Popik ◽  
Valeriya Shulakova ◽  
Konstantin Tertyshnikov ◽  
...  

2013 ◽  
Vol 129 (12) ◽  
pp. 701-706
Author(s):  
Takashi FUJII ◽  
Yuichi SUGAI ◽  
Kyuro SASAKI ◽  
Toshiyuki HASHIDA ◽  
Toshiyuki TOSHA ◽  
...  

2019 ◽  
Vol 9 (8) ◽  
pp. 1686 ◽  
Author(s):  
Sai Wang ◽  
Kouqi Liu ◽  
Juan Han ◽  
Kegang Ling ◽  
Hongsheng Wang ◽  
...  

The low recovery of oil from tight liquid-rich formations is still a major challenge for a tight reservoir. Thus, supercritical CO2 flooding was proposed as an immense potential recovery method for production improvement. While up to date, there have been few studies to account for the formation properties’ variation during the CO2 Enhanced Oil Recovery (EOR) process, especially investigation at the micro-scale. This work conducted a series of measurements to evaluate the rock mechanical change, mineral alteration and the pore structure properties’ variation through the supercritical CO2 (Sc-CO2) injection process. Corresponding to the time variation (0 days, 10 days, 20 days, 30 days and 40 days), the rock mechanical properties were analyzed properly through the nano-indentation test, and the mineralogical alterations were quantified through X-ray diffraction (XRD). In addition, pore structures of the samples were measured through the low-temperature N2 adsorption tests. The results showed that, after Sc-CO2 injection, Young’s modulus of the samples decreases. The nitrogen adsorption results demonstrated that, after the CO2 injection, the mesopore volume of the sample would change as well as the specific Brunauer–Emmett–Teller (BET) surface area which could be aroused from the chemical reactions between the CO2 and some authigenic minerals. XRD analysis results also indicated that mesopore were altered due to the chemical reaction between the injected Sc-CO2 and the minerals.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5259
Author(s):  
Yuan-Heng Li ◽  
Chien-Hao Shen ◽  
Cheng-Yueh Wu ◽  
Bieng-Zih Hsieh

The purpose of this study is to reduce the risk of leakage of CO2 geological storage by injecting the dissolved CO2 solution instead of the supercritical CO2 injection. The reservoir simulation method is used in this study to evaluate the contributions of the different trapping mechanisms, and the safety index method is used to evaluate the risk of CO2 leakage. The function of the dissolved CO2 solution injection is performed by a case study of a deep saline aquifer. Two scenarios are designed in this study: the traditional supercritical CO2 injection and the dissolved CO2 solution injection. The contributions of different trapping mechanisms, plume migrations, and the risk of leakage are evaluated and compared. The simulation results show that the risk of leakage via a natural pathway can be decreased by the approach of injecting dissolved CO2 solution instead of supercritical CO2. The amount of the CO2 retained by the safe trapping mechanisms in the dissolved CO2 solution injection scenario is greater than that in the supercritical CO2 scenario. The process of CO2 mineralization in the dissolved CO2 solution injection scenario is also much faster than that in the supercritical CO2 scenario. Changing the injection fluid from supercritical CO2 to a dissolved CO2 solution can significantly increase the safety of the CO2 geological storage. The risk of CO2 leakage from a reservoir can be eliminated because the injected CO2 can be trapped totally by safe trapping mechanisms.


2007 ◽  
Author(s):  
Millan Arcia Einstein ◽  
Yeirys Caridad Gerder Castillo ◽  
Jenny Coromoto Gil

Sign in / Sign up

Export Citation Format

Share Document