Relationship Between Global Warming and Hurricanes Wind Speed Based on Analyzing MODIS Remote Sensing Data

Author(s):  
Xiaoli Chen
2020 ◽  
Vol 12 (1) ◽  
pp. 1666-1678
Author(s):  
Mohammed H. Aljahdali ◽  
Mohamed Elhag

AbstractRabigh is a thriving coastal city located at the eastern bank of the Red Sea, Saudi Arabia. The city has suffered from shoreline destruction because of the invasive tidal action powered principally by the wind speed and direction over shallow waters. This study was carried out to calibrate the water column depth in the vicinity of Rabigh. Optical and microwave remote sensing data from the European Space Agency were collected over 2 years (2017–2018) along with the analog daily monitoring of tidal data collected from the marine station of Rabigh. Depth invariant index (DII) was implemented utilizing the optical data, while the Wind Field Estimation algorithm was implemented utilizing the microwave data. The findings of the current research emphasis on the oscillation behavior of the depth invariant mean values and the mean astronomical tides resulted in R2 of 0.75 and 0.79, respectively. Robust linear regression was established between the astronomical tide and the mean values of the normalized DII (R2 = 0.81). The findings also indicated that January had the strongest wind speed solidly correlated with the depth invariant values (R2 = 0.92). Therefore, decision-makers can depend on remote sensing data as an efficient tool to monitor natural phenomena and also to regulate human activities in fragile ecosystems.


Author(s):  
Olga Stanislavovna Ermakova ◽  
Daniil Alexandrovich Sergeev ◽  
Nikita Sergeevich Rusakov ◽  
Evgeny Ivanovich Poplavsky ◽  
Galina Nikolaevna Balandina ◽  
...  

2020 ◽  
Author(s):  
Evgeny Poplavsky ◽  
Nikita Rusakov ◽  
Olga Ermakova ◽  
Yuliya Troitskaya ◽  
Daniil Sergeev ◽  
...  

<p>The current investigation is concerned with the study of the dependence of the scattered cross-polarized microwave signal from the Sentinel-1 satellite on the parameters of the marine atmospheric boundary layer based on data obtained from falling NOAA GPS-sondes under tropical cyclone conditions.<br>Field measurements and remote sensing data for hurricanes in the Atlantic and Pacific oceans were analyzed for the period 2016 - 2018. Based on the analysis of data measured by GPS-sondes, averaged wind speed profiles were obtained, while the parameters of the atmospheric boundary layer (drag coefficient and wind friction velocity) were retrieved using the self-similarity property of velocity profiles from measurements in the “wake” part.<br>Sentinel-1 SAR images were used as remote sensing data. Images with cross polarization have a high level of thermal noise (NESZ), which leads to errors when retrieving the NRCS. In this regard, preliminary image processing was performed in the SNAP application.<br>Using the obtained parameters of the atmospheric boundary layer, the data of GRS-sonde measurements and Sentinel-1 SAR images on cross polarization were collocated and the dependences of the NRCS on the parameters of the atmospheric boundary layer were obtained.</p><div>This work was supported by the RFBR projects No. 19-05-00249, 19-05-00366, 18-35-20068 (remote sensing data analysis) and RSF No. 19-17-00209 (GPS-sondes data assimilation and processing).</div>


2002 ◽  
Vol 8 (1) ◽  
pp. 15-22
Author(s):  
V.N. Astapenko ◽  
◽  
Ye.I. Bushuev ◽  
V.P. Zubko ◽  
V.I. Ivanov ◽  
...  

2011 ◽  
Vol 17 (6) ◽  
pp. 30-44
Author(s):  
Yu.V. Kostyuchenko ◽  
◽  
M.V. Yushchenko ◽  
I.M. Kopachevskyi ◽  
S. Levynsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document