System Development for Automatic Control Using BCI

Author(s):  
Antonio Meza ◽  
Rosario Baltazar ◽  
Miguel Casillas ◽  
Víctor Zamudio ◽  
Francisco Mosiño ◽  
...  
2021 ◽  
Vol 36 (1) ◽  
pp. 209-218
Author(s):  
Dr. Mohammad M. Othman ◽  
K.R. Ishwarya ◽  
Manikandan Ganesan ◽  
Ganesh Babu Loganathan

This paper proposed the system development especially for watering the agricultural crops depend upon the WSN. This paper focused to develop and model a control process by joint radars in the agricultural crop along with information management through web and smartphone application. The 3 elements are application of mobile, web and hardware. The first element i.e. hardware was executed and designed in manage box hardware linked to gather information about the crops. Soil humidity radars are used to detect the agricultural field linked to the control box. The 2nd element i.e. web method was web depend method which was executed and modeled to handle the details of field and crop information. This element applied information mining to examine the information for finding perfect soil humidity, moisture level and temperature. The last element i.e. mobile method was used mainly to manage field watering by a mobile method in a phone. This allows manual or automatic control by the controller. An automatic control uses information from soil humidity radars for watering the crops. The user may choose the manual method for watering the field in the system control method. The method may send notifications by LINE API for the line app. The method was tested and executed in Northeast India. The outputs displayed the executions to be helpful in the field of agriculture. The humidity level of the soil was appropriately maintained for improving manufacturing in agriculture, growth of vegetables and decreasing cost. Therefore, this paper displays the driving agriculture field by digital creativity.


Author(s):  
F. Shaapur ◽  
M.J. Kim ◽  
Seh Kwang Lee ◽  
Soon Gwang Kim

TEM characterization and microanalysis of the recording media is crucial and complementary to new material system development as well as quality control applications. Due to the type of material generally used for supporting the medium, i.e., a polymer, conventional macro- and microthinning procedures for thin foil preparation are not applicable. Ultramicrotorny (UM) is a viable option and has been employed in previous similar studies. In this work UM has been used for preparation of XTEM samples from a magneto-optical (MO) recording medium in its original production format.The as-received material system consisted of a 4-layer, 2100 Å thick medium including a 300 Å TbFeCo layer enveloped by silicon nitride protective layers supported on a 1.2 mm thick × 135 mm (5.25 in.) diameter polycarbonate disk. Recording tracks had an approximate pitch of 1.6 μm separated by 800 Å deep peripheral grooves. Using a Buehler Isomet low-speed diamond saw, 1 mm wide and 20 mm long strips were cut out of the disk along the recording tracks.


1988 ◽  
Author(s):  
Robert M. Yadrick ◽  
J. R. Knight ◽  
Jimmy L. Mitchell ◽  
David S. Vaughan ◽  
Bruce M. Perrin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document