design guidance
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 56)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Binghe Liu ◽  
Huacui Wang ◽  
Yangzheng Cao ◽  
Xin Liu ◽  
Ya Mao ◽  
...  

With the rapid development of electric vehicles (EVs) and electronic devices in current mobile society, the safety issues of lithium-ion batteries (LIBs) have attracted worldwide attention. Mechanical, electrochemical, and thermal...


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiqiang Wang ◽  
Huan Hu ◽  
Weicun Zhang ◽  
Zhongzhi Hu

Abstract Engine transient control has been challenging due to its stringent requirements from both performance and safety. Many methodologies have been proposed such as conventional schedule-based methods, linear parameter varying, multiobjective optimization and evolutionary computations etc. These approaches have been well-established and led to a series of significant results. However, they are either not providing limit protection or requiring exhaustive computational resources, particularly when generating results into full flight envelope applications. Consequently a compromise between limit protection and computational complexity is necessitated. This note considers a sequential quadratic programming (SQP)-based method for full flight envelope investigations. The proposed method can provide important design guidance and the corresponding claims are validated through detailed analysis and simulations.


2021 ◽  
Author(s):  
Brandon Jolly ◽  
Nathalie Co ◽  
Ashton Davis ◽  
Paula Diaconescu ◽  
Chong Liu

Compartmentalization is an attractive approach to enhance catalytic activity by retaining reactive intermediates and mitigating deactivating pathways. Such a concept has been well explored in biochemical and more recently, organometallic catalysis to ensure high reaction turnovers with minimal side reactions. However, a scarcity of theoretical framework towards confined organometallic chemistry impedes a broader utility for the implementation of compartmentalization. Herein, we report a general kinetic model and offer design guidance for a compartmentalized organometallic catalytic cycle. In comparison to a non-compartmentalized catalysis, compartmentalization is quantitatively shown to prevent the unwanted intermediate deactivation, boost the corresponding reaction efficiency (γ), and subsequently increase catalytic turnover frequency (TOF). The key parameter in the model is the volumetric diffusive conductance (F_V) that describes catalysts’ diffusion propensity across a compartment’s boundary. Optimal values of F_V for a specific organometallic chemistry are needed to achieve maximal values of γ and TOF. As illustrated in specific reaction examples, our model suggests that a tailored compartment design, including the use of nanomaterials, is needed to suit a specific organometallic catalytic cycle. This work provides justification and design principles for further exploration into compartmentalizing organometallics to enhance catalytic performance. The conclusions from this work are generally applicable to other catalytic systems that need proper design guidance in confinement and compartmentalization.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tae Wook Heo ◽  
Andrew Grieder ◽  
Bo Wang ◽  
Marissa Wood ◽  
Tim Hsu ◽  
...  

AbstractAlthough multiple oxide-based solid electrolyte materials with intrinsically high ionic conductivities have emerged, practical processing and synthesis routes introduce grain boundaries and other interfaces that can perturb primary conduction channels. To directly probe these effects, we demonstrate an efficient and general mesoscopic computational method capable of predicting effective ionic conductivity through a complex polycrystalline oxide-based solid electrolyte microstructure without relying on simplified equivalent circuit description. We parameterize the framework for Li7-xLa3Zr2O12 (LLZO) garnet solid electrolyte by combining synthetic microstructures from phase-field simulations with diffusivities from molecular dynamics simulations of ordered and disordered systems. Systematically designed simulations reveal an interdependence between atomistic and mesoscopic microstructural impacts on the effective ionic conductivity of polycrystalline LLZO, quantified by newly defined metrics that characterize the complex ionic transport mechanism. Our results provide fundamental understanding of the physical origins of the reported variability in ionic conductivities based on an extensive analysis of literature data, while simultaneously outlining practical design guidance for achieving desired ionic transport properties based on conditions for which sensitivity to microstructural features is highest. Additional implications of our results are discussed, including a possible connection between ion conduction behavior and dendrite formation.


Author(s):  
Woongbae Kim ◽  
Jaemin Eom ◽  
Kyujin Cho

Soft fluidic actuators produce continuous and life-like motions that are intrinsically safe, but current designs are not yet mature enough to enable large deployment with high force and low-cost fabrication methods. Here, soft fluidic actuators with two superimposed origami architectures are reported. Driven by a fluid input, the presented dual-origami soft actuators produce quasi-sequential deployment and bending motion that is guided by unsymmetric unfolding of low-stretchable origami components. The dominance between the deployment and bending can be shifted by varying the unfolding behavior, enabling pre-programming of the motion. The proposed origami-inspired soft actuators are directly fabricated by low-cost fused deposition modeling 3D-printing, and subjected to a heat treatment post-processing to enhance the fluid sealing performance. Finally, soft gripper applications are presented and they successfully demonstrate gripping tasks that each requires strength, delicacy, precision and dexterity. The dual-origami approach offers a design guidance for soft robots to embody grow-and-retract motion with a small initial form factor, promising for applications in next-generation soft robotic systems.


Author(s):  
Woongbae Kim ◽  
Jaemin Eom ◽  
Kyujin Cho

Soft fluidic actuators produce continuous and life-like motions that are intrinsically safe, but current designs are not yet mature enough to enable large deployment with high force and low-cost fabrication methods. Here, soft fluidic actuators with two superimposed origami architectures are reported. Driven by a fluid input, the presented dual-origami soft actuators produce quasi-sequential deployment and bending motion that is guided by unsymmetric unfolding of low-stretchable origami components. The dominance between the deployment and bending can be shifted by varying the unfolding behavior, enabling pre-programming of the motion. The proposed origami-inspired soft actuators are directly fabricated by low-cost fused deposition modeling 3D-printing, and subjected to a heat treatment post-processing to enhance the fluid sealing performance. Finally, soft gripper applications are presented and they successfully demonstrate gripping tasks that each requires strength, delicacy, precision and dexterity. The dual-origami approach offers a design guidance for soft robots to embody grow-and-retract motion with a small initial form factor, promising for applications in next-generation soft robotic systems.


Post Scriptum ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 155-172
Author(s):  
Mersiha Kolčaković

We believe that the preschool period is key to encouraging the development of all existing potentials in children, and proper detection and multiple stimulation can develop more intensively and express the child’s talent best in the preschool development period. The crucial role in this is played by the family, but also by the educational institutions in which children spend a large part of their time. Therefore, the role of the pedagogue as a professional associate in the educational institution for the proper detection of gifted children, and the design, guidance and interpretation of ways and effects of working with them is very important.The topic of this professional paper is the recognition of giftedness in kindergarten, a look at pedagogical practice and ways of working with potentially gifted children in some preschool institutions in the Sarajevo Canton. The paper briefly presents the theoretical framework, necessary for understanding the topic and the concept of giftedness, as well as other related concepts and definitions. In order to determine how to identify gifted children in one of the kindergartens in the Sarajevo Canton, a potentially gifted four-year-old V.Z. was identified and monitored. from Sarajevo through a case study.


2021 ◽  
pp. 129-134
Author(s):  
Michael Wiklund ◽  
Erin Davis ◽  
Alexandria Trombley ◽  
Jacqueline Edwards

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jiayuan Luo ◽  
Xiangyang Xu ◽  
Peitang Wei ◽  
Chengxiang Shi ◽  
Guofeng Liu

The motion smoothness of 3C locking robot directly affects the machining performance. Improving the motion smoothness can optimize the motion trajectory and reduce the processing time. In this paper, a novel machining path optimization model including motion smoothness is built by employing the coordinate boundary of velocity and acceleration after evaluating the machining motion smoothness of the 3C locking robot. Secondly, based on the creation of the ant colony of adaptive function algorithm, the optimization model of the 3C locking robot in the situation of fixed bolt hole position and floating bolt hole position is resolved. Lastly, the proposed approach collects and analyses a huge amount of data to enable robots to make on-the-fly decisions in the middle of production, even when faced with unexpected circumstances. In the Spark distributed environment, we use the conventional K clustering technique to improve the final output utilizing clustering means. The results show that the machining path optimization of fixed hole considering the motion smoothness improves the smoothness but extends the machining path; the cooperative machining path optimization of multiregion floating bolt holes can significantly improve the motion smoothness and effectively reduce the length of the path. The research results provide theoretical support and design guidance for designers.


2021 ◽  
Author(s):  
Brandon Jolly ◽  
Chong Liu

Compartmentalization is an attractive approach to enhance catalytic activity by retaining reactive intermediates and mitigating deactivating pathways. Such a concept has been well explored in biochemical and more recently, organometallic catalysis to ensure high reaction turnovers with minimal side reactions. However, a scarcity of theoretical framework towards confined organometallic chemistry impedes a broader utility for the implementation of compartmentalization. Herein, we report a general kinetic model and offer design guidance for a compartmentalized organometallic catalytic cycle. In comparison to a non-compartmentalized catalysis, compartmentalization is quantitatively shown to prevent the unwanted intermediate deactivation, boost the corresponding reaction efficiency (𝛾), and subsequently increase catalytic turnover frequency (𝑇𝑂𝐹). The key parameter in the model is the volumetric diffusive conductance (𝐹 ) that describes catalysts’ diffusion propensity across a compartment’s boundary. Optimal values of 𝐹 for a specific organometallic chemistry are needed to achieve maximal values of 𝛾 and 𝑇𝑂𝐹. Our model suggests a tailored compartment design, including the use of nanomaterials, is needed to suit a specific organometallic catalysis. This work provides justification and design principles for further exploration into compartmentalizing organometallics to enhance catalytic performance.


Sign in / Sign up

Export Citation Format

Share Document