Penalized Fuzzy C-Means Enabled Hybrid Region Growing in Segmenting Medical Images

Author(s):  
Shouvik Chakraborty ◽  
Sankhadeep Chatterjee ◽  
Ajanta Das ◽  
Kalyani Mali
2016 ◽  
Vol 78 (4-3) ◽  
Author(s):  
Hussain Rahman ◽  
Fakhrud Din ◽  
Sami ur Rahmana ◽  
Sehatullah Sehatullah

Region-growing based image segmentation techniques, available for medical images, are reviewed in this paper. In digital image processing, segmentation of humans' organs from medical images is a very challenging task. A number of medical image segmentation techniques have been proposed, but there is no standard automatic algorithm that can generally be used to segment a real 3D image obtained in daily routine by the clinicians. Our criteria for the evaluation of different region-growing based segmentation algorithms are: ease of use, noise vulnerability, effectiveness, need of manual initialization, efficiency, computational complexity, need of training, information used, and noise vulnerability. We test the common region-growing algorithms on a set of abdominal MRI scans for the aorta segmentation. The evaluation results of the segmentation algorithms show that region-growing techniques can be a better choice for segmenting an object of interest from medical images.


2013 ◽  
Vol 760-762 ◽  
pp. 1552-1555 ◽  
Author(s):  
Jing Jing Wang ◽  
Xiao Wei Song ◽  
Mei Fang

Image segmentation in medical image processing has been extensively used which has also been applied in different fields of medicine to assist doctors to make the correct judgment and grasp the patient's condition. However, nowadays there are no image threshold segmentation techniques that can be applied to all of the medical images; so it has became a challenging problem. In this paper, it applies a method of identifying edge of the tissues and organs to recognize its contour, and then selects a number of seed points on the contour range to locate the cancer area by region growing. And finally, the result has demonstrated that this method can mostly locate the cancer area accurately.


2001 ◽  
Author(s):  
Regina Pohle ◽  
Klaus D. Toennies

2018 ◽  
Vol 7 (3.12) ◽  
pp. 73
Author(s):  
B Prasanthi ◽  
Dr N. Nagamalleswararao

Segmentation of magnetic resonance images is medically complex and important for study and diagnosis of medical brain images, because of its sensitivity in terms of noise for brain medical images. These are the main issues in classification of brain images. Because of uncertainty & vagueness of brain medical images, so that rough sets, fuzzy sets and Rough sets are mathematical tools evaluate and handle uncertainty and vagueness in medical brain images. Traditionally, different type of fuzzy sets, Rough sets and rough sets based approaches were introduced, they have different several drawbacks with respect to different parameters. So this paper introduces a novel image segmentation calculation method i.e. Enhanced and Explored Intuitionistic Rough based Fuzzy C-means Approach (EEISFCMA) with estimation of weight bias parameter for brain image segmentation. Intuitionistic Rough based fuzzy sets are generalized form of fuzzy, Rough sets and their representative elements are evaluated with non-membership and membership value. Proposed algorithm of this paper consists standard features of existing clustering without spatial weight context data, it defines sensitive of noise in brain images, so that our proposed algorithm deals with intensity and noise reduction of brain image effectively. Furthermore, to reduce iterations in clustering, proposed algorithm initializes cluster centroid based on weight measure using max-dist evaluation method before execution of proposed algorithm. Experimental results of proposed approach carried out efficient image segmentation results compared to existing segmented approaches developed in brain image and other related images. Mainly proposed approach have consists better experimental evaluation based on results.  


Author(s):  
Neeraj Sharma ◽  
Amit K. Ray ◽  
Shiru Sharma ◽  
K.K. Shukla ◽  
Lalit M. Aggarwal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document