scholarly journals 3D SEGMENTATION OF GLIOMA FROM BRAIN MR IMAGES USING SEEDED REGION GROWING AND FUZZY C-MEANS CLUSTERING

Author(s):  
Tejus Thirumeni .
Author(s):  
Mustafa Zuhaer Nayef AL-Dabagh

<span id="docs-internal-guid-c8cba487-7fff-2314-f38a-f2936a74e0fd"><span>Automated segmentation of a tumor is still a considerably exciting research topic in the medical imaging processing field, and it plays a considerable role in forming a right diagnosis, to aid effective medical treatment. In this work, a fully automated system for segmentation of the brain tumor in MRI images is introduced. The suggested system consists of three parts: Initially, the image is pre-processed to enhance contrast, eliminate noise, and strip the skull from the image using filtering and morphological operations. Secondly, segmentation of the image happens using two techniques, fuzzy c-means clustering (FCM) and with the application of a seeded region growing algorithm (SGR). Thirdly, this method proposes a post-processing step to smooth segmentation region edges using morphological operations. The testing of the proposed system involved 233 patients, which included 287 MRI images. A comparison of the results ensued, with the manual verification of the traces performed by doctors, which ultimately proved an average Dice Coefficient of 90.13% and an average Jaccard Coefficient of 82.60% also, by comparison with traditional segmentation techniques such as FCM method. The segmentation results and quantitative data analysis demonstrates the effectiveness of the suggested system.</span></span>


2020 ◽  
Vol 21 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Madallah Alruwaili ◽  
Muhammad Hameed Siddiqi ◽  
Muhammad Arshad Javed

A novel method is presented in this paper for finding brain tumor and classifying it using the back-propagation neural network is proposed. Spatial Fuzzy C-Means clustering is utilized for the segmentation of image to identify the influenced area of brain MRI picture. Automated detection of tumors in brain MR images is urgent in many diagnosis processes. Because of noise, blurred edges, the detection, and classification of brain tumor are very difficult. This paper presents one programmed brain tumor identification strategy to expand the exactness and yield and diminishing the determination time. The objective is ordering the tissues to three classes of typical, start and malignant. The size and the location tumor is very important for doctors for defining the treatment of tumor. The proposed determination strategy comprises of four phases, pre-processing of MR images, feature extraction, and classification. The features are extracted using Dual-Tree Complex wavelet transformation (DTCWT). Back Propagation Neural Network (BPN) is employed for finding brain tumor in MRI images. In the last stage, a productive scheme is proposed for segmentation depends on the Spatial Fuzzy C-Means Clustering. The performance analysis clearly proves that the proposed scheme is more efficient and the efficiency of the scheme is measured with sensitivity and specificity. The evaluation is performed on the image data set of 15 MRI images of brain.


2021 ◽  
Vol 17 (2) ◽  
pp. 73-93
Author(s):  
Wala’a Jasim ◽  
Rana Mohammed

The segmentation methods for image processing are studied in the presented work. Image segmentation can be defined as a vital step in digital image processing. Also, it is used in various applications including object co-segmentation, recognition tasks, medical imaging, content based image retrieval, object detection, machine vision and video surveillance. A lot of approaches were created for image segmentation. In addition, the main goal of segmentation is to facilitate and alter the image representation into something which is more important and simply to be analyzed. The approaches of image segmentation are splitting the images into a few parts on the basis of image’s features including texture, color, pixel intensity value and so on. With regard to the presented study, many approaches of image segmentation are reviewed and discussed. The techniques of segmentation might be categorized into six classes: First, thresholding segmentation techniques such as global thresholding (iterative thresholding, minimum error thresholding, otsu's, optimal thresholding, histogram concave analysis and entropy based thresholding), local thresholding (Sauvola’s approach, T.R Singh’s approach, Niblack’s approaches, Bernsen’s approach Bruckstein’s and Yanowitz method and Local Adaptive Automatic Binarization) and dynamic thresholding. Second, edge-based segmentation techniques such as gray-histogram technique, gradient based approach (laplacian of gaussian, differential coefficient approach, canny approach, prewitt approach, Roberts approach and sobel approach). Thirdly, region based segmentation approaches including Region growing techniques (seeded region growing (SRG), statistical region growing, unseeded region growing (UsRG)), also merging and region splitting approaches. Fourthly, clustering approaches, including soft clustering (fuzzy C-means clustering (FCM)) and hard clustering (K-means clustering). Fifth, deep neural network techniques such as convolution neural network, recurrent neural networks (RNNs), encoder-decoder and Auto encoder models and support vector machine. Finally, hybrid techniques such as evolutionary approaches, fuzzy logic and swarm intelligent (PSO and ABC techniques) and discusses the pros and cons of each method.


Sign in / Sign up

Export Citation Format

Share Document