Optimized Analysis of Operational Strategy Based on Different Optional Energy Supply Technologies in a Distributed Energy System of Buildings in Tianjin Eco-City during Cooling Season

Author(s):  
Zhengrong Li ◽  
Han Zhu ◽  
Zhe Tian ◽  
Wei Feng
2018 ◽  
Vol 175 ◽  
pp. 04007
Author(s):  
LU Jin ◽  
YAN Tao ◽  
CAI Wen ◽  
Yang Hong-yan ◽  
WAN Zhong-hai

The distributed energy generation system is one of the main forms of the second-generation energy system currently. Three kinds of viable schemas of distributed energy supply system for nine users of the small region heat of Yangpu area combining with urban heating were proposed in this thesis, in which the gas turbines were selected. By analyzing the heat economy and pollutant emissions, the advantages and disadvantages of each schema were found out and the relatively better one was selected ultimately. Finally, some possible development trends and the prospects of the distributing energy supply system were also related and some complementary proposals were to table for some aspects of the system.


2016 ◽  
Vol 101 ◽  
pp. 741-751 ◽  
Author(s):  
Bing Yan ◽  
Marialaura Di Somma ◽  
Nicola Bianco ◽  
Peter B. Luh ◽  
Giorgio Graditi ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1180 ◽  
Author(s):  
Chen Chen ◽  
Jiangfan Lin ◽  
Lei Pan ◽  
Kwang Lee ◽  
Li Sun

The distributed energy system is an energy supply method built around the end users, which can achieve energy sustainability and reduce emissions compared to traditional centralized energy systems. The micro gas turbine (MGT)-based combined cooling and power (CCP) system has received renewed attention as an important distributed energy system technology due to its substantial energy savings and reduced emission levels. The task of the MGT-CCP system is to quickly adapt to changes in various renewable energy sources to maintain the balance in energy supply and demand in a distributed energy system. Therefore, it is imperative to improve the load tracking capability of the MGT-CCP system with advanced control technologies toward achieving this goal. However, the difficulty of controlling the MGT-CCP system is that the MGT responds very fast while CCP responds very slowly. To this end, the dynamic characteristics and nonlinear distribution of the MGT and CCP processes are analyzed, and a coordinated predictive control strategy is proposed by utilizing the generalized predictive control for the MGT system and the Hammerstein generalized predictive control for the CCP system. The coordinated predictive control of generalized predictive control and Hammerstein generalized predictive control was implemented in an 80 kW MGT-CCP simulator to verify the effectiveness of the proposed method. The simulation results show that compared with PID and MPC, the proposed control method not only can greatly improve simultaneous cooling and power load-following capability, but also has the best control effect when accessing with renewable energy.


Author(s):  
Guohua Shi ◽  
Songling Wang ◽  
Youyin Jing ◽  
Yuefen Gao

With the rapid economic development, the energy demand is rising and energy-related greenhouses gas emissions are growing rapidly in China. The usage percent of renewable energy in use is still low while the energy consumption is still increasing. Due to the expanding pressure from energy demand, environment concerns and society issues, distributed energy systems (DESs), especially combined heat and power (CHP), are encouraged and expected to play a greater role by the government. This paper mainly seeks to explore and answer some of questions. Firstly, the different technologies of various DES options are briefly reviewed. Then the question of why distributed energy systems should be developed in China is considered. Recent trends and current patterns of energy supply and use in China are also discussed. Some typical distributed energy systems used in China are introduced. This article also discusses what barriers need be overcome if China wishes to move towards a sustainable energy future. Finally, several suggestions are proposed to favor the wide application of DES in China. It is concluded that DES is a good option with respect to China’s sustainable development that has institutional, market and regulatory support.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 600
Author(s):  
Bin Ouyang ◽  
Lu Qu ◽  
Qiyang Liu ◽  
Baoye Tian ◽  
Zhichang Yuan ◽  
...  

Due to the coupling of different energy systems, optimization of different energy complementarities, and the realization of the highest overall energy utilization rate and environmental friendliness of the energy system, distributed energy system has become an important way to build a clean and low-carbon energy system. However, the complex topological structure of the system and too many coupling devices bring more uncertain factors to the system which the calculation of the interval power flow of distributed energy system becomes the key problem to be solved urgently. Affine power flow calculation is considered as an important solution to solve uncertain steady power flow problems. In this paper, the distributed energy system coupled with cold, heat, and electricity is taken as the research object, the influence of different uncertain factors such as photovoltaic and wind power output is comprehensively considered, and affine algorithm is adopted to calculate the system power flow of the distributed energy system under high and low load conditions. The results show that the system has larger operating space, more stable bus voltage and more flexible pipeline flow under low load condition than under high load condition. The calculation results of the interval power flow of distributed energy systems can provide theoretical basis and data support for the stability analysis and optimal operation of distributed energy systems.


Sign in / Sign up

Export Citation Format

Share Document