scholarly journals Improving Simultaneous Cooling and Power Load-Following Capability for MGT-CCP Using Coordinated Predictive Controls

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1180 ◽  
Author(s):  
Chen Chen ◽  
Jiangfan Lin ◽  
Lei Pan ◽  
Kwang Lee ◽  
Li Sun

The distributed energy system is an energy supply method built around the end users, which can achieve energy sustainability and reduce emissions compared to traditional centralized energy systems. The micro gas turbine (MGT)-based combined cooling and power (CCP) system has received renewed attention as an important distributed energy system technology due to its substantial energy savings and reduced emission levels. The task of the MGT-CCP system is to quickly adapt to changes in various renewable energy sources to maintain the balance in energy supply and demand in a distributed energy system. Therefore, it is imperative to improve the load tracking capability of the MGT-CCP system with advanced control technologies toward achieving this goal. However, the difficulty of controlling the MGT-CCP system is that the MGT responds very fast while CCP responds very slowly. To this end, the dynamic characteristics and nonlinear distribution of the MGT and CCP processes are analyzed, and a coordinated predictive control strategy is proposed by utilizing the generalized predictive control for the MGT system and the Hammerstein generalized predictive control for the CCP system. The coordinated predictive control of generalized predictive control and Hammerstein generalized predictive control was implemented in an 80 kW MGT-CCP simulator to verify the effectiveness of the proposed method. The simulation results show that compared with PID and MPC, the proposed control method not only can greatly improve simultaneous cooling and power load-following capability, but also has the best control effect when accessing with renewable energy.

2018 ◽  
Vol 175 ◽  
pp. 04007
Author(s):  
LU Jin ◽  
YAN Tao ◽  
CAI Wen ◽  
Yang Hong-yan ◽  
WAN Zhong-hai

The distributed energy generation system is one of the main forms of the second-generation energy system currently. Three kinds of viable schemas of distributed energy supply system for nine users of the small region heat of Yangpu area combining with urban heating were proposed in this thesis, in which the gas turbines were selected. By analyzing the heat economy and pollutant emissions, the advantages and disadvantages of each schema were found out and the relatively better one was selected ultimately. Finally, some possible development trends and the prospects of the distributing energy supply system were also related and some complementary proposals were to table for some aspects of the system.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3389 ◽  
Author(s):  
Sergio Bruno ◽  
Maria Dicorato ◽  
Massimo La Scala ◽  
Roberto Sbrizzai ◽  
Pio Alessandro Lombardi ◽  
...  

In this this paper, the optimal sizing of electric and thermal storage is applied to the novel definition of a net zero multi energy system (NZEMS). A NZMES is based on producing electricity exclusively from renewable energy sources (RES) and converting it into other energy forms to satisfy multiple energy needs of a community. Due to the intermittent nature of RES, storage resources are needed to increase the self-sufficiency of the system. Possible storage sizing choices are examined considering, on an annual basis, the solution of a predictive control problem aimed at optimizing daily operation. For each day of the year, a predictive control problem is formulated and solved, aimed at minimizing operating costs. Electric, thermal, and (electric) transportation daily curves and expected RES production are assessed by means of a model that includes environmental parameters. Test results, based on the energy model of a small rural village, show expected technical-economic performance of different planning solutions, highlighting how the renewable energy mix influences the choice of both thermal and electric storage, and how self-sufficiency can affect the overall cost of energy.


2016 ◽  
Vol 101 ◽  
pp. 741-751 ◽  
Author(s):  
Bing Yan ◽  
Marialaura Di Somma ◽  
Nicola Bianco ◽  
Peter B. Luh ◽  
Giorgio Graditi ◽  
...  

2017 ◽  
Vol 7 (2) ◽  
pp. 56-62
Author(s):  
N. Stoyanov ◽  
D. Abornev ◽  
S. Smirnov ◽  
A. Stoyanov

Abstract The relevancy of the study is due to low efficiency of using solar and geothermal energy in the existing process schemes. In this regard, this article is aimed at revealing the possibilities of using solar and geothermal energy for the integrated energy supply of separate facilities from renewable energy sources. The mathematical simulation method based on the theory of graphs of energy system operation, which makes it possible to analyze the efficiency of the integrated use of solar and geothermal energies for the heat-cold supply of separate facilities, is the main approach to studying this problem. Energy consumption throughout the year and the emergency energy source capacity in “peak” modes were determined based on the developed mathematical model of managing the system of integrated power supply of separate facilities from renewable energy sources plotted with the use of the theory of graphs. The article materials are of practical value for the designers of the systems of integrated heat-cold supply of separate facilities.


2021 ◽  
Author(s):  
Danilo Yu

This project introduces a modeling software that manages the power flow of a grid-connected distributed energy system on a daily basis. The system uses a control strategy that prioritizes the use of renewable energy sources over storage devices and conventional sources. Wind turbines and PV arrays are the primary sources of energy. Battery bank is used as the permanent storage device and small natural gas generators and the grid are the conventional sources. The software can manage the power flow of electric vehicles as mobile storage units. The power optimization algorithm monitors the power available from each energy source, analyzes and combines their outputs to meet the load demand. Output of the energy sources are analyzed using 15-minute time series simulations. The computer model was developed using MATLAB with a graphical user interface for easy setup, operation and analysis of the results.


2021 ◽  
Author(s):  
Firdovsi Gasanzade ◽  
Fahim Sadat ◽  
Ilja Tuschy ◽  
Sebastian Bauer

<p>Compressed air energy storage (CAES) in porous formations is one option to compensate the expected fluctuations in energy supply in future energy systems with a 100% share of renewable energy sources. Mechanical energy is stored as pressurized air in a subsurface porous formation using off-peak power, and released during peak demand using a turbine for power generation. Depending on share and type of renewable energy sources in the future, different storage capacities and storage power rates will have to be satisfied to compensate fluctuating nature of the renewable power supply. Therefore, this study investigates scenarios for subsurface compressed air energy storage using four potential future energy system development pathways. Because for CAES subsurface processes and power generation are strongly linked via reservoir pressure and flow rates, coupled power plant and geostorage model has to be developed and employed to evaluate potential operation conditions for such a storage technique.</p><p>In this study, a diabatic CAES is designed, with a three-stage compression and a two-stage expansion with heat recuperator in the power plant and a porous formation as a storage formation with 20 m thickness in an anticline trap structure at a depth between 700 and 1500 m. A withdrawal rate of 115 MW and a total stored energy of up to 348 GWh per year are derived from the future energy system scenarios. Scenario simulations are carried out by coupling the open-source thermal engineering TESPy code and the multiphase-multicomponent ECLIPSE flow simulator using highly fluctuating load profiles with a time resolution of one hour. In addition to the diabatic CAES, two adiabatic concepts are considered for the same geostorage configuration.</p><p>Results show that nine vertical storage wells are sufficient to deliver the target air mass flow rates required by the power plant during 98% of the year. Flow rate limitation occurs due to bottom hole pressure limits either during the injection or the withdrawal phases, depending on the specific load profile of the future energy systems, as well as the prior operation conditions. Thus, our scenario simulation shows that one porous media CAES site can cover all expected load profiles and balance the expected offsets between energy demand and energy supply up to the GWh scale. Balancing of the energy system at the national level can be achieved by up-scaling of the results obtained in this study.</p>


2014 ◽  
Vol 22 (2) ◽  
pp. 34-43 ◽  
Author(s):  
Justyna Chodkowska-Miszczuk

Abstract Small-scale renewable energy systems in the context of the development of distributed generation, are discussed for the case of Poland. A distributed energy system is efficient, reliable and environmentally friendly, and is one of the most recent trends in the development of the energy sector in Poland. One of the important dimensions of this process is the creation of micro- and small-power producers based on renewable, locally-available energy sources. It is clear that the development of small-scale renewable energy producers takes place in two ways. One of these is through small hydropower plants, which are the aftermath of hydropower development in areas traditionally associated with water use for energy purposes (northern and western Poland). The second is through other renewable energy sources, mainly biogas and solar energy and located primarily in southern Poland, in highly urbanized areas (e.g. Śląskie Voivodship). In conclusion, the development of small-scale renewable energy systems in Poland is regarded as a good option with respect to sustainable development.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4214 ◽  
Author(s):  
Chengzhou Li ◽  
Ningling Wang ◽  
Hongyuan Zhang ◽  
Qingxin Liu ◽  
Youguo Chai ◽  
...  

The distributed renewable energy system, integrating various renewable energy resources, is a significant energy supply technology within energy internet. It is an effective way to meet increasingly growing demand for energy conservation and environmental damage reduction in energy generation and energy utilization. In this paper, the life cycle assessment (LCA) method and fuzzy rough sets (FRS) theory are combined to build an environmental evaluation model for a distributed renewable energy system. The ReCiPe2016 method is selected to calculate the environmental effect scores of the distributed energy system, and the FRS is utilized to identify the crucial activities and exchanges during its life cycle from cradle to grave. The generalized evaluation method is applied to a real-world case study, a typical distributed energy system located in Yanqing District, Beijing, China, which is composed of wind power, small-scale hydropower, photovoltaic, centralized solar thermal power plant and a biogas power plant. The results show that the environmental effect of per kWh power derived from the distributed renewable energy system is 2.06 × 10−3 species disappeared per year, 9.88 × 10−3 disability-adjusted life years, and 1.75 × 10−3 USD loss on fossil resources extraction, and further in the uncertainty analysis, it is found that the environmental load can be reduced effectively and efficiently by improving life span and annual utilization hour of power generation technologies and technology upgrade for wind turbine and photovoltaic plants. The results show that the proposed evaluation method could fast evaluate the environmental effects of a distributed energy system while the uncertainty analysis with FRS successfully and effectively identifies the key element and link among its life span.


2021 ◽  
Vol 2 (2(58)) ◽  
pp. 51-54
Author(s):  
Olha Boiko ◽  
Vira Shendryk ◽  
Yuliia Parfenenko ◽  
Petr Pavlenko ◽  
Yevhenii Kholiavka

The object of research is the process of expert evaluation in planning the energy supply of buildings using renewable energy sources. The conducted research is based on the application of system analysis methods to formalize the process of expert evaluation in the planning of an energy system with renewable energy sources. Here were used methods of expert evaluation of characteristics of qualitative criteria, methods of the theory of fuzzy sets and fuzzy logic for the formation of the value of criteria, and methods of estimating the reliability of the expert evaluation. Methods of structural analysis and functional modelling of information systems are used to build structural and functional models of the expert evaluation process. The issue of creating an appropriate information system for planning a power system with renewable energy sources is considered. One of the components of the information system is the unit for evaluating candidate experts. A six-level algorithm of the hierarchical structure of expert selection is proposed. As a result of the algorithm, an expert group is formed. This paper shows the process of narrowing the circle of experts from twenty to three candidates. The list of criteria influencing the choice of experts is formed: length of service, availability of the certificate, the efficiency of decision-making, education. The process of assessing the stability of experts' opinions is shown. It is proposed to use the method of processing the opinions of experts to find the value of the membership functions of qualitative criteria. As a result of the study, a group of three experts was formed, whose opinions are taken into account when choosing alternatives to the energy system. In accordance with the proposed information technology of energy supply planning of buildings using renewable energy sources, an information system in the form of a web-oriented application is proposed. A separate part of the information system is a subsystem for working with experts. The diagram of sequence of actions of the expert and the interface of work with system is developed. The use of the information system allowed to increase the efficiency of questionnaires of experts and decision-making on the choice of the optimal structure of the power system as a whole.


Sign in / Sign up

Export Citation Format

Share Document