A Research on Vibration Performance of Light-Duty Truck Doors Based on Road Load Spectrum

Author(s):  
Xin Yan ◽  
Di Jiang ◽  
Yangyang Bai ◽  
Weitian Yi ◽  
Zhenyu Guo ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 661
Author(s):  
Alexandros T. Zachiotis ◽  
Evangelos G. Giakoumis

A Monte Carlo simulation methodology is suggested in order to assess the impact of ambient wind on a vehicle’s performance and emissions. A large number of random wind profiles is generated by implementing the Weibull and uniform statistical distributions for wind speed and direction, respectively. Wind speed data are drawn from eight cities across Europe. The vehicle considered is a diesel-powered, turbocharged, light-commercial vehicle and the baseline trip is the worldwide harmonized light-duty vehicles WLTC cycle. A detailed engine-mapping approach is used as the basis for the results, complemented with experimentally derived correction coefficients to account for engine transients. The properties of interest are (engine-out) NO and soot emissions, as well as fuel and energy consumption and CO2 emissions. Results from this study show that there is an aggregate increase in all properties, vis-à-vis the reference case (i.e., zero wind), if ambient wind is to be accounted for in road load calculation. Mean wind speeds for the different sites examined range from 14.6 km/h to 24.2 km/h. The average increase in the properties studied, across all sites, ranges from 0.22% up to 2.52% depending on the trip and the property (CO2, soot, NO, energy consumption) examined. Based on individual trip assessment, it was found that especially at high vehicle speeds where wind drag becomes the major road load force, CO2 emissions may increase by 28%, NO emissions by 22%, and soot emissions by 13% in the presence of strong headwinds. Moreover, it is demonstrated that the adverse effect of headwinds far exceeds the positive effect of tailwinds, thus explaining the overall increase in fuel/energy consumption as well as emissions, while also highlighting the shortcomings of the current certification procedure, which neglects ambient wind effects.


Author(s):  
Jiří Vávra ◽  
Zbyněk Syrovátka ◽  
Michal Takáts ◽  
Eduardo Barrientos

This work presents an experimental investigation of advanced combustion of extremely lean natural gas / air mixture in a gas fueled automotive engine with a scavenged pre-chamber. The pre-chamber, which was designed and manufactured in-house, is scavenged with natural gas and is installed into a modified cylinder head of a gas fueled engine for a light duty truck. For initial pre-chamber ignition tests and optimizations, the engine is modified into a single cylinder one. The pre-chamber is equipped with a spark plug, fuel supply and a miniature pressure transducer. This arrangement allows a simultaneous crank angle resolved pressure measurement in the pre-chamber and in the main combustion chamber and provides important validation data for computational fluid dynamics (CFD) simulations. The results of the tests and initial optimizations show that the pre-chamber engine is able to operate within a significantly wider range of mixture composition than the conventional spark ignition engine. Full load operation of the pre-chamber engine is feasible with stoichiometric mixture (compatible with a three-way catalyst), without excessive thermal loading of components. At low load operation, the results show low NOx emissions with a high potential to fulfil current and future NOx limits without lean NOx exhaust gas after-treatment. The scavenged pre-chamber helps to increase the combustion rate mainly in the initial phase of combustion. However, significant unburned hydrocarbons emissions due to incomplete combustion need further optimizations. Thermal efficiency of lean operation of the engine with the pre-chamber compared to the conventional spark ignition system operated in stoichiometric conditions shows approximately 13% improvement.


2018 ◽  
Vol 179 ◽  
pp. 559-566 ◽  
Author(s):  
Nurul Aiyshah Mazlan ◽  
Wira Jazair Yahya ◽  
Ahmad Muhsin Ithnin ◽  
A.K. Hasannuddin ◽  
Nur Atiqah Ramlan ◽  
...  

2010 ◽  
Vol 29-32 ◽  
pp. 1556-1561
Author(s):  
Xiao Hui Shi ◽  
Xi Hong Zou ◽  
Ping Yang

The principle of remote parameter control(RPC) and test method of road simulator test are analyzed, and the road simulation test of motorcycle is implemented with road simulator produced by MTS company. Firstly, by disposing strain gauge and accelerometer, the load spectrum of motorcycle is sampled when the motorcycle runs on gravel road and concrete road with constant speed. Then using the front and rear axle acceleration as desired response signals, the simulation iteration and road simulation test are conducted. At last, the key problems of motorcycle road simulation test are solved. The result shows that the desired response signals and the monitor signals are well matched, and the road load spectrum of motorcyle is accurately reproduced.


Sign in / Sign up

Export Citation Format

Share Document