3205 A Strategy for Reduction of Variance in Fuel Consumption of Light Duty Truck by Considering Driving Characteristics : Analysis on Driving Torque Response and Fuel Consumption

2006 ◽  
Vol 2006.15 (0) ◽  
pp. 191-194
Author(s):  
Kazuhiro TOMITA ◽  
Dam Hoang PHUC ◽  
Yohei MICHITSUJI ◽  
Masao NAGAI ◽  
Author(s):  
Kevin Laboe ◽  
Marcello Canova

Up to 65% of the energy produced in an internal combustion engine is dissipated to the engine cooling circuit and exhaust gases [1]. Therefore, recovering a portion of this heat energy is a highly effective solution to improve engine and drivetrain efficiency and to reduce CO2 emissions, with existing vehicle and powertrain technologies [2,3]. This paper details a practical approach to the utilization of powertrain waste heat for light vehicle engines to reduce fuel consumption. The “Systems Approach” as described in this paper recovers useful energy from what would otherwise be heat energy wasted into the environment, and effectively distributes this energy to the transmission and engine oils thus reducing the oil viscosities. The focus is on how to effectively distribute the available powertrain heat energy to optimize drivetrain efficiency for light duty vehicles, minimizing fuel consumption during various drive cycles. To accomplish this, it is necessary to identify the available powertrain heat energy during any drive cycle and cold start conditions, and to distribute this energy in such a way to maximize the overall efficiency of the drivetrain.


Author(s):  
Jakub Lasocki

The World-wide harmonised Light-duty Test Cycle (WLTC) was developed internationally for the determination of pollutant emission and fuel consumption from combustion engines of light-duty vehicles. It replaced the New European Driving Cycle (NEDC) used in the European Union (EU) for type-approval testing purposes. This paper presents an extensive comparison of the WLTC and NEDC. The main specifications of both driving cycles are provided, and their advantages and limitations are analysed. The WLTC, compared to the NEDC, is more dynamic, covers a broader spectrum of engine working states and is more realistic in simulating typical real-world driving conditions. The expected impact of the WLTC on vehicle engine performance characteristics is discussed. It is further illustrated by a case study on two light-duty vehicles tested in the WLTC and NEDC. Findings from the investigation demonstrated that the driving cycle has a strong impact on the performance characteristics of the vehicle combustion engine. For the vehicles tested, the average engine speed, engine torque and fuel flow rate measured over the WLTC are higher than those measured over the NEDC. The opposite trend is observed in terms of fuel economy (expressed in l/100 km); the first vehicle achieved a 9% reduction, while the second – a 3% increase when switching from NEDC to WLTC. Several factors potentially contributing to this discrepancy have been pointed out. The implementation of the WLTC in the EU will force vehicle manufacturers to optimise engine control strategy according to the operating range of the new driving cycle.


Author(s):  
Saeed Vasebi ◽  
Yeganeh M. Hayeri ◽  
Constantine Samaras ◽  
Chris Hendrickson

Gasoline is the main source of energy used for surface transportation in the United States. Reducing fuel consumption in light-duty vehicles can significantly reduce the transportation sector’s impact on the environment. Implementation of emerging automated technologies in vehicles could result in fuel savings. This study examines the effect of automated vehicle systems on fuel consumption using stochastic modeling. Automated vehicle systems examined in this study include warning systems such as blind spot warning, control systems such as lane keeping assistance, and information systems such as dynamic route guidance. We have estimated fuel savings associated with reduction of accident and non-accident-related congestion, aerodynamic force reduction, operation load, and traffic rebound. Results of this study show that automated technologies could reduce light-duty vehicle fuel consumption in the U.S. by 6% to 23%. This reduction could save $60 to $266 annually for the owners of vehicles equipped with automated technologies. Also, adoption of automated vehicles could benefit all road users (i.e., conventional vehicle drivers) up to $35 per vehicle annually (up to $6.2 billion per year).


2019 ◽  
Vol 20 (10) ◽  
pp. 1047-1058 ◽  
Author(s):  
Giovanni Vagnoni ◽  
Markus Eisenbarth ◽  
Jakob Andert ◽  
Giuseppe Sammito ◽  
Joschka Schaub ◽  
...  

The increasing connectivity of future vehicles allows the prediction of the powertrain operational profiles. This technology will improve the transient control of the engine and its exhaust gas aftertreatment systems. This article describes the development of a rule-based algorithm for the air path control, which uses the knowledge of upcoming driving events to reduce especially [Formula: see text] and particulate (soot) emissions. In the first section of this article, the boosting and the lean [Formula: see text] trap systems of a diesel powertrain are investigated as relevant sub-systems for shorter prediction horizons, suitable for Car-to-X communication range. Reference control strategies, based on state-of-the-art engine control unit algorithms and suitable predictive control logics, are compared for the two sub-systems in a model in the loop simulation environment. The simulation driving cycles are based on Worldwide harmonized Light-duty Test Cycle and Real Driving Emissions regulations. Due to the shorter, and consequently more probable, prediction horizon and the demonstrated emission improvements, a dedicated rule-based algorithm for the air path control is developed and benchmarked in the Worldwide harmonized Light-duty Test Cycle as described in the second part of this article. Worldwide harmonized Light-duty Test Cycle test results show an improvement potential for engine-out soot and [Formula: see text] emissions of up to 5.2% and 1.2%, respectively, for the air path case and a reduction of the average fuel consumption in Real Driving Emissions of up to 1% for the lean NOx trap case. In addition, the developed rule-based algorithm allows the adjustment of the desired NOx–soot trade-off, while keeping the fuel consumption constant. The study concludes with brief recommendations for future research directions, as for example, the introduction of a prediction module for the estimation of the vehicle operational profile in the prediction horizon.


Author(s):  
Jiří Vávra ◽  
Zbyněk Syrovátka ◽  
Michal Takáts ◽  
Eduardo Barrientos

This work presents an experimental investigation of advanced combustion of extremely lean natural gas / air mixture in a gas fueled automotive engine with a scavenged pre-chamber. The pre-chamber, which was designed and manufactured in-house, is scavenged with natural gas and is installed into a modified cylinder head of a gas fueled engine for a light duty truck. For initial pre-chamber ignition tests and optimizations, the engine is modified into a single cylinder one. The pre-chamber is equipped with a spark plug, fuel supply and a miniature pressure transducer. This arrangement allows a simultaneous crank angle resolved pressure measurement in the pre-chamber and in the main combustion chamber and provides important validation data for computational fluid dynamics (CFD) simulations. The results of the tests and initial optimizations show that the pre-chamber engine is able to operate within a significantly wider range of mixture composition than the conventional spark ignition engine. Full load operation of the pre-chamber engine is feasible with stoichiometric mixture (compatible with a three-way catalyst), without excessive thermal loading of components. At low load operation, the results show low NOx emissions with a high potential to fulfil current and future NOx limits without lean NOx exhaust gas after-treatment. The scavenged pre-chamber helps to increase the combustion rate mainly in the initial phase of combustion. However, significant unburned hydrocarbons emissions due to incomplete combustion need further optimizations. Thermal efficiency of lean operation of the engine with the pre-chamber compared to the conventional spark ignition system operated in stoichiometric conditions shows approximately 13% improvement.


Sign in / Sign up

Export Citation Format

Share Document