Crude Oil Fouling Mitigation by Products Thermal Management in Heat Exchangers

Author(s):  
Ogboo Chikere Aja ◽  
Reuben Brandon Huan Chung Lee ◽  
Saw Chun Lin
2021 ◽  
Vol 287 ◽  
pp. 03003
Author(s):  
Sampath Emani ◽  
M. Ramasamy ◽  
Ku Zilati Ku Shaari

One of the major concerns in petroleum refinery preheat trains is identified as fouling. Fouling impacts the refinery economics and environment heavily. Various approaches to mitigate fouling have not yielded the desired results. This is due to lack of understanding on the effect of influencing forces on crude oil fouling in heat exchangers. Therefore, this study attempts to investigate the effects of various forces such as gravity, Saffman Lift, drag and thermophoretic on crude oil fouling in heat exchangers through Computational Fluid Dynamics (CFD) simulations. From the simulations, it is observed that the higher particle size and particle concentration resulted in higher deposition of particles. Deposition velocities increase for larger sized particles and decrease for small and medium sized particles. The Increased flow velocities and surface roughness increases wall shear and mitigate fouling. Lower temperature gradients at the heat exchanger surface decreases deposition rates due to high thermophoretic forces. The mass deposition rate is reduced by 10.3 and 16.9% with 0.03 and 0.05 Pa, respectively, for 0.14 m/s flow velocity. Also, the mass deposition rate is reduced by 15.6 and 25.1% with 0.03 and 0.05 Pa, respectively, for 0.47 m/s flow velocity. With increased surface roughness from 0.03 to 0.05 mm, the mass deposition rate is reduced by 11.48 and 19.18%, respectively, for 0.14 m/s flow velocity. Also, for 0.47 m/s flow velocity, the mass deposition rate is reduced by 18.84 and 32.92% for 0.03- and 0.05-mm surface roughness, respectively.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


2019 ◽  
Vol 37 (4) ◽  
pp. 927-935
Author(s):  
Mario Cucumo ◽  
Marilena Mele ◽  
Francesco Nicoletti ◽  
Antonio Galloro ◽  
Diego Perrone ◽  
...  

Author(s):  
Marilene Turini Piccinato ◽  
Carmen Luisa Barbosa Guedes ◽  
Eduardo Di Mauro
Keyword(s):  

2020 ◽  
pp. 1-17
Author(s):  
Umesh B. Deshannavar ◽  
Ramasamy Marappagounder
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document