Application to Partial Fractional Differential Equation

Author(s):  
Kolade M. Owolabi ◽  
Abdon Atangana
2006 ◽  
Vol 2006 ◽  
pp. 1-18 ◽  
Author(s):  
Katica (Stevanovic) Hedrih

We considered the problem on transversal oscillations of two-layer straight bar, which is under the action of the lengthwise random forces. It is assumed that the layers of the bar were made of nonhomogenous continuously creeping material and the corresponding modulus of elasticity and creeping fractional order derivative of constitutive relation of each layer are continuous functions of the length coordinate and thickness coordinates. Partial fractional differential equation and particular solutions for the case of natural vibrations of the beam of creeping material of a fractional derivative order constitutive relation in the case of the influence of rotation inertia are derived. For the case of natural creeping vibrations, eigenfunction and time function, for different examples of boundary conditions, are determined. By using the derived partial fractional differential equation of the beam vibrations, the almost sure stochastic stability of the beam dynamic shapes, corresponding to thenth shape of the beam elastic form, forced by a bounded axially noise excitation, is investigated. By the use of S. T. Ariaratnam's idea, as well as of the averaging method, the top Lyapunov exponent is evaluated asymptotically when the intensity of excitation process is small.


In this study, we have successfully found some travelling wave solutions of the variant Boussinesq system and fractional system of two-dimensional Burgers' equations of fractional order by using the -expansion method. These exact solutions contain hyperbolic, trigonometric and rational function solutions. The fractional complex transform is generally used to convert a partial fractional differential equation (FDEs) with modified Riemann-Liouville derivative into ordinary differential equation. We showed that the considered transform and method are very reliable, efficient and powerful in solving wide classes of other nonlinear fractional order equations and systems.


2021 ◽  
Vol 5 (3) ◽  
pp. 83
Author(s):  
Bilgi Görkem Yazgaç ◽  
Mürvet Kırcı

In this paper, we propose a fractional differential equation (FDE)-based approach for the estimation of instantaneous frequencies for windowed signals as a part of signal reconstruction. This approach is based on modeling bandpass filter results around the peaks of a windowed signal as fractional differential equations and linking differ-integrator parameters, thereby determining the long-range dependence on estimated instantaneous frequencies. We investigated the performance of the proposed approach with two evaluation measures and compared it to a benchmark noniterative signal reconstruction method (SPSI). The comparison was provided with different overlap parameters to investigate the performance of the proposed model concerning resolution. An additional comparison was provided by applying the proposed method and benchmark method outputs to iterative signal reconstruction algorithms. The proposed FDE method received better evaluation results in high resolution for the noniterative case and comparable results with SPSI with an increasing iteration number of iterative methods, regardless of the overlap parameter.


Sign in / Sign up

Export Citation Format

Share Document