scholarly journals The transversal creeping vibrations of a fractional derivative order constitutive relation of nonhomogeneous beam

2006 ◽  
Vol 2006 ◽  
pp. 1-18 ◽  
Author(s):  
Katica (Stevanovic) Hedrih

We considered the problem on transversal oscillations of two-layer straight bar, which is under the action of the lengthwise random forces. It is assumed that the layers of the bar were made of nonhomogenous continuously creeping material and the corresponding modulus of elasticity and creeping fractional order derivative of constitutive relation of each layer are continuous functions of the length coordinate and thickness coordinates. Partial fractional differential equation and particular solutions for the case of natural vibrations of the beam of creeping material of a fractional derivative order constitutive relation in the case of the influence of rotation inertia are derived. For the case of natural creeping vibrations, eigenfunction and time function, for different examples of boundary conditions, are determined. By using the derived partial fractional differential equation of the beam vibrations, the almost sure stochastic stability of the beam dynamic shapes, corresponding to thenth shape of the beam elastic form, forced by a bounded axially noise excitation, is investigated. By the use of S. T. Ariaratnam's idea, as well as of the averaging method, the top Lyapunov exponent is evaluated asymptotically when the intensity of excitation process is small.

Author(s):  
Hongguang Sun ◽  
Yangquan Chen ◽  
Wen Chen

This paper proposes a new type of fractional differential equation model, named time fractional differential equation model, in which noise term is included in the time derivative order. The new model is applied to anomalous relaxation and diffusion processes suffering noisy field. The analysis and numerical simulation results show that our model can well describes the feature of these processes. We also find that the scale parameter and the frequency of the noise play a crucial role in the behaviors of these systems. At the end, we recognize some potential applications of this new model.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hoa Ngo Van ◽  
Vu Ho

The aim of the paper is to consider the existence and uniqueness of solution of the fractional differential equation with a positive constant coefficient under Hilfer fractional derivative by using the fixed-point theorem. We also prove the bounded and continuous dependence on the initial conditions of solution. Besides, Hyers–Ulam stability and Hyers–Ulam–Rassias stability are discussed. Finally, we provide an example to demonstrate our main results.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.


In this study, we have successfully found some travelling wave solutions of the variant Boussinesq system and fractional system of two-dimensional Burgers' equations of fractional order by using the -expansion method. These exact solutions contain hyperbolic, trigonometric and rational function solutions. The fractional complex transform is generally used to convert a partial fractional differential equation (FDEs) with modified Riemann-Liouville derivative into ordinary differential equation. We showed that the considered transform and method are very reliable, efficient and powerful in solving wide classes of other nonlinear fractional order equations and systems.


Fractals ◽  
2016 ◽  
Vol 24 (02) ◽  
pp. 1650021 ◽  
Author(s):  
KIRAN M. KOLWANKAR

The concept of local fractional derivative was introduced in order to be able to study the local scaling behavior of functions. However it has turned out to be much more useful. It was found that simple equations involving these operators naturally incorporate the fractal sets into the equations. Here, the scope of these equations has been extended further by considering different possibilities for the known function. We have also studied a separable local fractional differential equation along with its method of solution.


2016 ◽  
Vol 12 (11) ◽  
pp. 6807-6811
Author(s):  
Haribhau Laxman Tidke

We study the uniquenessof solutionfor nonlinear implicit fractional differential equation with initial condition involving Caputo fractional derivative. The technique used in our analysis is based on an application of Bihari and Medved inequalities.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mehboob Alam ◽  
Akbar Zada ◽  
Ioan-Lucian Popa ◽  
Alireza Kheiryan ◽  
Shahram Rezapour ◽  
...  

AbstractIn this work, we investigate the existence, uniqueness, and stability of fractional differential equation with multi-point integral boundary conditions involving the Caputo fractional derivative. By utilizing the Laplace transform technique, the existence of solution is accomplished. By applying the Bielecki-norm and the classical fixed point theorem, the Ulam stability results of the studied system are presented. An illustrative example is provided at the last part to validate all our obtained theoretical results.


2020 ◽  
Vol 40 (2) ◽  
pp. 227-239
Author(s):  
John R. Graef ◽  
Said R. Grace ◽  
Ercan Tunç

This paper is concerned with the asymptotic behavior of the nonoscillatory solutions of the forced fractional differential equation with positive and negative terms of the form \[^{C}D_{c}^{\alpha}y(t)+f(t,x(t))=e(t)+k(t)x^{\eta}(t)+h(t,x(t)),\] where \(t\geq c \geq 1\), \(\alpha \in (0,1)\), \(\eta \geq 1\) is the ratio of positive odd integers, and \(^{C}D_{c}^{\alpha}y\) denotes the Caputo fractional derivative of \(y\) of order \(\alpha\). The cases \[y(t)=(a(t)(x^{\prime}(t))^{\eta})^{\prime} \quad \text{and} \quad y(t)=a(t)(x^{\prime}(t))^{\eta}\] are considered. The approach taken here can be applied to other related fractional differential equations. Examples are provided to illustrate the relevance of the results obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ya-ling Li ◽  
Shi-you Lin

We study the following nonlinear fractional differential equation involving thep-Laplacian operatorDβφpDαut=ft,ut,1<t<e,u1=u′1=u′e=0,Dαu1=Dαue=0, where the continuous functionf:1,e×0,+∞→[0,+∞),2<α≤3,1<β≤2.Dαdenotes the standard Hadamard fractional derivative of the orderα, the constantp>1, and thep-Laplacian operatorφps=sp-2s. We show some results about the existence and the uniqueness of the positive solution by using fixed point theorems and the properties of Green's function and thep-Laplacian operator.


Sign in / Sign up

Export Citation Format

Share Document