scholarly journals Bird Species Classification Using Transfer Learning with Multistage Training

Author(s):  
Akash Kumar ◽  
Sourya Dipta Das
Author(s):  
Tejalal Choudhary ◽  
Shubham Gujar ◽  
Kruti Panchal ◽  
Sarvjeet ◽  
Vipul Mishra ◽  
...  

Author(s):  
Aska E. Mehyadin ◽  
Adnan Mohsin Abdulazeez ◽  
Dathar Abas Hasan ◽  
Jwan N. Saeed

The bird classifier is a system that is equipped with an area machine learning technology and uses a machine learning method to store and classify bird calls. Bird species can be known by recording only the sound of the bird, which will make it easier for the system to manage. The system also provides species classification resources to allow automated species detection from observations that can teach a machine how to recognize whether or classify the species. Non-undesirable noises are filtered out of and sorted into data sets, where each sound is run via a noise suppression filter and a separate classification procedure so that the most useful data set can be easily processed. Mel-frequency cepstral coefficient (MFCC) is used and tested through different algorithms, namely Naïve Bayes, J4.8 and Multilayer perceptron (MLP), to classify bird species. J4.8 has the highest accuracy (78.40%) and is the best. Accuracy and elapsed time are (39.4 seconds).


Author(s):  
Diego Rafael Lucio ◽  
Yandre Maldonado ◽  
Gomes da Costa

2021 ◽  
Vol 11 (19) ◽  
pp. 9226
Author(s):  
Burooj Ghani ◽  
Sarah Hallerberg

The automatic classification of bird sounds is an ongoing research topic, and several results have been reported for the classification of selected bird species. In this contribution, we use an artificial neural network fed with pre-computed sound features to study the robustness of bird sound classification. We investigate, in detail, if and how the classification results are dependent on the number of species and the selection of species in the subsets presented to the classifier. In more detail, a bag-of-birds approach is employed to randomly create balanced subsets of sounds from different species for repeated classification runs. The number of species present in each subset is varied between 10 and 300 by randomly drawing sounds of species from a dataset of 659 bird species taken from the Xeno-Canto database. We observed that the shallow artificial neural network trained on pre-computed sound features was able to classify the bird sounds. The quality of classifications were at least comparable to some previously reported results when the number of species allowed for a direct comparison. The classification performance is evaluated using several common measures, such as the precision, recall, accuracy, mean average precision, and area under the receiver operator characteristics curve. All of these measures indicate a decrease in classification success as the number of species present in the subsets is increased. We analyze this dependence in detail and compare the computed results to an analytic explanation assuming dependencies for an idealized perfect classifier. Moreover, we observe that the classification performance depended on the individual composition of the subset and varied across 20 randomly drawn subsets.


Sign in / Sign up

Export Citation Format

Share Document